• 제목/요약/키워드: sensor and actuator

검색결과 626건 처리시간 0.023초

굴곡 진동모드를 이용한 초음파 선형 압전 액추에이터 개발 (Development of ultrasonic linear piezoelectric actuator with flexuralvibration mode)

  • 윤장호;최우천;강종윤;강진규;윤석진
    • 센서학회지
    • /
    • 제18권6호
    • /
    • pp.461-466
    • /
    • 2009
  • This paper represents a piezoelectric ultrasonic linear actuator with flexural vibration mode. The actuator is composed of two piezo ceramics, the elastic body, and the connecting tip. It is driven by the frictional force between the connecting tip and the linear motion guide. Unimorph actuators have flexural vibration. Its middle point is fixed so that suitable to the flexural vibration of $3/2\lambda$. These vibrations contribute to elliptical motion by mixed mode between longitudinal and transverse mode. It was generated when the ultrasonic electrical signals with 90 degree phase difference are applied to two ceramics. A linear movement can be easily obtained using the elliptical motion. The ATILA, FEM simulator has been used to design actuator and verify the kinetic and dynamic analysis. We used the ceramics of $20\times10\times1$ mm size and confirmed the flexural vibration of the $3/2\lambda$ at the 79 kHz through the scanning of 3D-vibrometer. The maximum velocity of actuator was 221 mm/sec and the thrust force of actuator was 2.7 N in 200Vp-p of additional voltage.

압전 감지기/작동기를 이용한 복합재 평판의 최적 진동제어 실험 (Optimal Vibration Control Experiments of Composite Plates Using Piezoelectric Sensor/Actuator)

  • 류근호;한재흥;이인
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.161-168
    • /
    • 1997
  • The present paper describes the vibration control experiment of composite plates with bonded piezoelectric sensor and actuator. The system is modeled as two degree-of-freedom system using modal coordinates and the system parameters are obtained from vibration tests. Kalman filter is adopted for extracting modal coordinates from sensor signal, and control algorithms applied to the system are Linear Quadratic Gaussian(LQG) control, Bang-Bang Control (BBC), Negative Velocity Feedback(NVF), Proportional Derivative Control(PDC). From observation of the spillover and control perfomance, it is concluded that a higher order control algorithm such as LQG rather than BBG, NVF, PDC is suitable for efficient simultaneous control of both bending and twisting modes of composite plates.

  • PDF

Active training machine with muscle activity sensor for elderly people

  • Matsuda, Goichi;Tanaka, Motohiro;Yoon, Sung-Jae;Ishimatsu, Takakazu;Kim, Seok-Hwan;Moromugi, Shunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1169-1172
    • /
    • 2005
  • For elderly people, an advanced training machine that uses actuator and can adjust load according to muscle activity is proposed. The proposed machine allows users to have a safe and effective training through exercise close to ordinal motion appears in daily life such as stretching or stooping motion. A muscle activity sensor real-timely monitors the activation level of user's muscle during the exercise and the training load is adjusted based on the measured data. The training load is exerted and continuously controlled by electric/pneumatic actuator.

  • PDF

바이몰프형 PZT를 이용한 소형만능재료시험기용 정밀 구동 액추에이터의 개발 (Development of a New Precision Actuator by Bi-morph Type PZT to Realize Nano/Micro Mechanical Testing in MUTM)

  • 권현규;최성대;정선환
    • 한국기계가공학회지
    • /
    • 제5권1호
    • /
    • pp.45-50
    • /
    • 2006
  • This paper shows a new precision actuator of MUTM(miniature universal testing machine) for the testing of compression and tensile load on the MEMS materials and structures. The MUTM consists of a sample holder, an ultraprecision precision actuator(tranlation stage) and load sensor. The precision actuator has been developed for generating displacements with nanometer accuracy and a dynamic range of 1mm simultaneously. In this paper, it can be made by using the displacement property of bi-morph type PZT, which is able to extend the long range(stroke) according to cantilever size. However, it is not enough to be generated for compression and tensile load in miniature universal testing machine. Therefore, three dozen bi-morph type PZTs are used for generating the load. The load and displacement of the precision actuator are 35g and 0.4mm respectively.

  • PDF

전자식 스로틀 제어시스템을 위한 오류 자기진단 기능 설계 및 구현 (The Design and Implementation of a Fault Diagnosis on an Electronic Throttle Control System)

  • 강종진;이우택
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.9-16
    • /
    • 2007
  • This paper describes the design and implementation of the fault diagnosis on the Electronic Throttle Control(ETC) System. The proposed fault diagnosis consists of an input signal, actuator and a processor diagnosis. The input signal diagnosis can detect the faults of the ETC system's input signals such as the position sensor fault, source voltage fault, load current fault, and desired position fault. The actuator diagnosis is able to detect the actuator fault due to the actuator aging and an obstacle which interfere in the movement of the actuator. The processor diagnosis detects the fault which prevents the microprocessor from operating the ETC software. In order to protect the breakdown of the ETC system and assure the driving safety, appropriate reactions are also proposed according to the detected faults. The safety and reliability of the ETC system can be improved by the proposed fault diagnosis.

마이크로 다공성 압전 진동자를 이용한 발향장치 설계 (Development of Scent Display Device using Micro-pore Piezo Actuator)

  • 이영준;임승주;김민구;이해룡;김정도
    • 센서학회지
    • /
    • 제25권6호
    • /
    • pp.399-405
    • /
    • 2016
  • Scent diffuser using micro-pore piezo actuator achieved a commercial success because of its cheap production cost, but it is easy to be use for IT-based contents due to difficulty of scent intensity control. To solve this problem, we control the emission amount of scent diffuser by changing amplitude and frequency of input voltage applied to micro-pore piezo actuator. And, we analyzed the effect of density of cotton core on emission amount and a relationship between hole-size of mesh in piezo actuator and viscosity of scents to design a mechanically optimal scent device.

피에조 세라믹을 이용한 유연한 평판의 능동진동제어 (Active Vibration Control of Flexible Plate using Piezo Ceramic)

  • 박수홍;김홍섭;홍진석;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.434-439
    • /
    • 1997
  • This paper presents the active control of a flexible plate vibration. The plate was excited by white noise point force and the control was performed by one or two piezo ceramic actuator bonded to the surface of the plate. An adaptive controller based on filtered-x or multiple filtered-x LMS algorithm was used and the controller was defined by minimizing the square of the response of error sensor. In the experiment, PZT sensor was used as an error sensor while white noise was applied as a disturbance. In the case of multiple channel control, more than 22 dB of vibration reduction was achieved. Results indicate that the vibration of a flexible plate could be controlled effectively when the piezo ceramic actuator was used with multiple filtered-x LMS algorithm.

  • PDF

Clustering Algorithm of Hierarchical Structures in Large-Scale Wireless Sensor and Actuator Networks

  • Quang, Pham Tran Anh;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.473-481
    • /
    • 2015
  • In this study, we propose a clustering algorithm to enhance the performance of wireless sensor and actuator networks (WSANs). In each cluster, a multi-level hierarchical structure can be applied to reduce energy consumption. In addition to the cluster head, some nodes can be selected as intermediate nodes (INs). Each IN manages a subcluster that includes its neighbors. INs aggregate data from members in its subcluster, then send them to the cluster head. The selection of intermediate nodes aiming to optimize energy consumption can be considered high computational complexity mixed-integer linear programming. Therefore, a heuristic lowest energy path searching algorithm is proposed to reduce computational time. Moreover, a channel assignment scheme for subclusters is proposed to minimize interference between neighboring subclusters, thereby increasing aggregated throughput. Simulation results confirm that the proposed scheme can prolong network lifetime in WSANs.

PZT 나노 스테이지를 이용한 광센서의 위치결정 (A Position Decision of Photo Sensor using a PZT Nano Positioning Stage)

  • 차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.271-275
    • /
    • 2016
  • For machining systems like the motor driven linear stage which have high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though piezo (PZT) actuator driven linear stages have high precision feed drivers and a short stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study was performed to examine the repeatability for home position decision of a EE-SX671 photo sensor as a home switch by using piezo actuator driven linear stages and capacitance probe.

MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화 (Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology)

  • 김민규;정용섭;조진호
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.