• Title/Summary/Keyword: sensor Things

Search Result 554, Processing Time 0.026 seconds

Investigation on the Design Method of a Energy Harvesting Power Supply for a Smart Sensor (스마트 센서의 에너지 하베스팅 전원 공급부 설계 방안 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2023
  • A smart sensor is the key element to implement IoT (Internet of Things) service, as a terminal equipment. This paper investigated the design method of a power supply using energy harvesting technique for a smart sensor. the performance of a power supply using a solar cell and a piezoelectric transducer as a energy harvesting device was verified and the method to optimize a power supply was analyzed depending on the operating condition of a smart sensor. Also the method to increase a battery life cycle as a auxiliary power supply was proposed.

The Method of Localization using Radical Line among Sensor Nodes under the Internet Of Things (사물 인터넷 환경에서 Radical Line을 이용한 센서 노드간의 지역화방법)

  • Shin, Bong-Hi;Jeon, Hye-Kyoung
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.207-212
    • /
    • 2015
  • The sensor network that is component of the Internet of Things require a lot of research to select the best route to send information to the anchor node, to collect a number of environment and cost efficient for communication between the sensor life. On the sensor network in one of the components of IOT's environment, sensor nodes are an extension device with low power low capacity. For routing method for data transmission between the sensor nodes, the connection between the anchor and the node must be accurate with in adjacent areas relatively. Localization CA (Centroid Algorithm) is often used although an error frequently occurs. In this paper, we propose a range-free localization method between sensor nodes based on the Radical Line in order to solve this problem.

Auto plant control system by using Arduino

  • Chowdhury, Deb
    • Korean Journal of Artificial Intelligence
    • /
    • v.1 no.1
    • /
    • pp.4-6
    • /
    • 2013
  • In the era of information society, IT industry has been developed very much. New technology has made appearance in citizens' lives. IOT (Internet of Things) has grown up the most rapidly in IT industry. Kevin Ashiton, MIT specialist, said, "Loading of FRIS and other sensors shall build Internet of things." Internet of things is said to let things have sensor and communication module and to exchange information and communicate each other. In this study, Internet of things has been applied to flowerpot to build automatic flowerpot control system that turns fan ON and supplies water depending upon temperature and moisture. Users are difficult to cognize temperature and humidity of flower pot correctly. In this study, an experiment obtained correct value of temperature and humidity to build control system. At the performance test of flower pot, commands turned ON depending upon temperature and humidity. Control system should be added to control water supply quantity and time objectively according to servo motor control. Purpose of further study was to control flower pot by remote system in connection with smart phone application. An application control can make not only temperature and humidity statistics but also server depending upon users' needs to turn fan ON and take actions and to control flower pot.

Analyses of Trend of Threat of Security in Internet of Things (사물 인터넷망에서의 보안 위협 기술 동향 분석)

  • Shin, Yoon-gu;Jung, Sungha;Do, Tahoon;Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.895-896
    • /
    • 2015
  • With the development of sensor, wireless mobile communication, embedded system and cloud computing, the technologies of Internet of Things have been widely used in logistics, Smart devices security, intelligent building and o on. Bridging between wireless sensor networks with traditional communication networks or Internet, IoT gateway plays n important role in IoT applications, which facilitates the integration of wireless sensor networks and mobile communication networks or Internet, and the management and control with wireless sensor networks. The IoT Gateway is a key component in IoT application systems but It has lot of security issues. We analyzed the trends of security and privacy matters.

  • PDF

Zigbee Adaptor for Two-way Data/Event/Service Interoperation in Internet of Things (사물인터넷의 양방향 데이터/이벤트/서비스 연동을 위한 지그비 어댑터)

  • Back, Moon-Ki;Yim, Hyung-Jun;Lee, Kyu-Chul
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.107-114
    • /
    • 2014
  • Things in the IoT(Internet of Things) make various services by exchanging information over networks. The IoT includes many types of WSNs(Wireless Sensor Networks) that consists of spatially distributed wireless sensor nodes and operates with the various purposes with useful technologies such as identification, sensing and communication. Typically, Zigbee network composed of low-cost and lowpower devices is mainly used for wide-area monitoring and remote device control systems. The IoT composed of various WSNs cannot interoperate among networks because of heterogeneous communication protocol and different data representation of each network, but can facilitate interconnection and information exchange among networks via the DDS, which is communication middleware standard that aims to enable real-time, high performance and interoperable data exchanges. In this paper, we proposed design of Zigbee Adaptor for two-way interoperation and data exchange between Zigbee network and other networks in the IoT. Zigbee Adaptor communicates with Zigbee network according to the Zigbee protocol and communicates with external networks via DDS. DDS-based Zigbee Adaptor can facilitate interoperation between a Zigbee network and external networks by systematic cooperation among its components.

Development Scenario of Dietary Intake Survey Using Internet of Things (IoT) (사물인터넷을 이용한 식이섭취 조사방법 개발 시나리오)

  • Lee, Ja-Yeon;Chang, Un-Jae
    • Journal of the Korean Dietetic Association
    • /
    • v.22 no.3
    • /
    • pp.225-231
    • /
    • 2016
  • The study suggests the possibility of using internet of things for a dietary intake survey. The development scenario of the dietary intake survey was composed of a weighing sensor for measuring food weight, bluetooth module for communicating through smart-phones, and smart-phone application. The weighing sensor attached to the bottom of utensils was designed to measure the weight of initial food & food eaten, and the results were transmitted to the smart-phone through the bluetooth module. The exclusive application in the smart-phone displayed the results of the amount of food intake, calorie intake, and eating rate. Through this system, subjects could continuously monitor their dietary intake & eating rate and recognize their actual eating environment, which leads to prevent overconsumption of food intake & form balanced eating habits. Based on this system, we need to consolidate and develop a weight control program.

A Low-Energy Ultra-Wideband Internet-of-Things Radio System for Multi-Standard Smart-Home Energy Management

  • Khajenasiri, Iman;Zhu, Peng;Verhelst, Marian;Gielen, Georges
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.354-365
    • /
    • 2015
  • This work presents an Internet of Things (IoT) system for home energy management based on a custom-designed Impulse Radio Ultra-Wideband (IR-UWB) transceiver that targets a generic and multi-standard control system. This control system enables the interoperability of heterogeneous devices: it integrates various sensor nodes based on ZigBee, EnOcean and UWB in the same middleware by utilizing an ad-hoc layer as an interface between the hardware and software. The paper presents as a first the design of the IR-UWB transceiver for a portable sensor node integrated with the middleware layer, and also describes the receiver connected to the control system. The custom-designed low-power transmitter on the sensor node is fabricated with 130 nm CMOS technology. It generates a signal with a 1.1 ns pulse width while consuming $39{\mu}W$ at 1 Mbps. The UWB sensor node with a temperature measurement capability consumes 5.31 mW, which is lower than the power level of state-of-the-art solutions for smart-home applications. The UWB hardware and software layers necessary to interface with the control system are verified in over-the-air measurements in an actual office environment. With the implementation of the presented sensor node and its integration in the energy management system, we demonstrate achievement of the broad flexibility demanded for IoT.

A weight-based cluster head replacement algorithm in the Internet of Things (사물인터넷에서 가중치 기반 클러스터 헤드 교체 알고리즘)

  • Kim, Jeong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.91-96
    • /
    • 2014
  • Since the sensors of Internet of Things (IOT) collect various data, the lifetime of sensor network is very important and the data should be aggregated efficiently. The contiguous collection by the certain sensors occurs an excessive battery consumption and successive transmission of same value of data should be avoided. To solve these things, we propose an weight-based cluster head replacement method that divides whole network into several grids and cluster head is selected by remaining energy, density of alive sensors and location of sensor. The aim of algorithm maximizes the lifetime of network. Our simulation results shows that the proposed method is very simple as well as balances energy consumption.

An Effective Data Distribution Scheme in Sensor Network for Internet of Things (사물인터넷을 위한 센서 네트워크에서 효율적인 데이터 분산 기법)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.769-774
    • /
    • 2015
  • Sensor network as an infrastructure of IoT(Internet of Things) has reliability issue because sensor nodes have limited memory as well as bounded battery. To improve the reliability of network, this paper proposes a data distribution scheme. The proposed algorithm distributes the data which each sensor node periodically produces into neighbor nodes that have enough memory as well as battery. This distribution process goes on more than 1 hop for overcoming unexpected spatial crash. Through simulation, we have confirmed that the proposed scheme can improve the resilience of IoT without affecting the life time of sensor network.

Adaptive Priority Queue-driven Task Scheduling for Sensor Data Processing in IoT Environments (사물인터넷 환경에서 센서데이터의 처리를 위한 적응형 우선순위 큐 기반의 작업 스케줄링)

  • Lee, Mijin;Lee, Jong Sik;Han, Young Shin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1559-1566
    • /
    • 2017
  • Recently in the IoT(Internet of Things) environment, a data collection in real-time through device's sensor has increased with an emergence of various devices. Collected data from IoT environment shows a large scale, non-uniform generation cycle and atypical. For this reason, the distributed processing technique is required to analyze the IoT sensor data. However if you do not consider the optimal scheduling for data and the processor of IoT in a distributed processing environment complexity increase the amount in assigning a task, the user is difficult to guarantee the QoS(Quality of Service) for the sensor data. In this paper, we propose APQTA(Adaptive Priority Queue-driven Task Allocation method for sensor data processing) to efficiently process the sensor data generated by the IoT environment. APQTA is to separate the data into job and by applying the priority allocation scheduling based on the deadline to ensure that guarantee the QoS at the same time increasing the efficiency of the data processing.