• Title/Summary/Keyword: sensor Things

Search Result 553, Processing Time 0.027 seconds

Study on Internet of Things Based Low-Power Wireless Sensor Network System for Wild Vegetation Communities Ecological Monitoring (야생식생군락 생태계 모니터링을 위한 사물인터넷 기반의 저전력 무선 센서네트워크 시스템에 관한 연구)

  • Kim, Nae-Soo;Lee, Kyeseon;Ryu, Jaehong
    • Journal of Information Technology Services
    • /
    • v.14 no.1
    • /
    • pp.159-173
    • /
    • 2015
  • This paper presents a study on the Internet of Things based low-power wireless sensor networks for remote monitoring of wildlife ecosystem due to climate change. Especially, it is targeting the wild vegetation communities ecological monitoring. First, we performed a pre-test and analysis for selecting the appropriate frequency for the sensor network to collect and deliver information reliably in harsh propagation environment of the forest area, and selected for sensors for monitoring wild vegetation communities on the basis of considerations for selecting the best sensor. In addition, we have presented the platform concept and hierarchical function structures for effectively monitoring, analyzing and predicting of ecosystem changes, to apply the Internet of Things in the ecological monitoring area. Based on this, this paper presents the system architecture and design of the Internet of Things based low-power wireless sensor networks for monitoring the ecosystem of the wild vegetation communities. Finally, we constructed and operated the test-bed applied to real wild trees, using the developed prototype based on the design.

Design of Improved Authentication Protocol for Sensor Networks in IoT Environment (사물인터넷 환경에서 센서 네트워크에 대한 개선된 인증 프로토콜 설계)

  • Kim, Deuk-Hun;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.467-478
    • /
    • 2015
  • Recently interest in Internet of Things(IoT) is increasing, and a variety of the security technologies that are suitable for Internet of Things has being studied. Especially sensor network area of the device is an increased using and diversified for a low specification devices because of characteristic of the Internet of Things. However, there is difficulty in directly applying the security technologies such as the current authentication technologies to a low specification device, so also increased security threats. Therefore, authentication protocol between entities on the sensor network communication in Internet of Things has being studied. In 2014, Porambage et al. suggested elliptic curve cryptography algorithm based on a sensor network authentication protocol for advance security of Internet of Things environment, but it is vulnerability exists. Accordingly, in this paper, we analyze the vulnerability in elliptic curve cryptography algorithm based on authentication protocol proposed by Porambage et al. and propose an improved authentication protocol for sensor networks in Internet of Things environment.

Security Vulnerability of Internet of Things and Its Solution (사물인터넷 보안 문제제기와 대안)

  • Choi, Heesik;Cho, Yanghyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • Internet of Things(IoT) is electronic devices and household appliances use wireless sensor network in environment of high speed wireless network and LTE mobile service. The combination of the development of Internet and wireless network led to development of new forms of service such as electronic devices and household appliances can connect to the Internet through various sensors and online servers such as a Home Network. Even though Internet of Things is useful, there are problems in Internet of Things. In environment of Internet of Things, information leakage could happens by illegal eavesdropping and spoofing. Also illegal devices of wireless communication interference can cause interfere in Internet of things service, physical damage and denial of service by modulation of data and sensor. In this thesis, it will analyze security threats and security vulnerability in environment of mobile services and smart household appliances, then it will suggest plan. To solve security issues, it is important that IT and RFID sensor related companies realize importance of security environment rather than focus on making profit. It is important to develop the standardized security model that applies to the Internet of Things by security-related packages, standard certification system and strong encrypted authentication.

Development of Internet of Things Sensor-based Information System Robust to Security Attack (보안 공격에 강인한 사물인터넷 센서 기반 정보 시스템 개발)

  • Yun, Junhyeok;Kim, Mihui
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.95-107
    • /
    • 2022
  • With the rapid development of Internet of Things sensor devices and big data processing techniques, Internet of Things sensor-based information systems have been applied in various industries. Depending on the industry in which the information systems are applied, the accuracy of the information derived can affect the industry's efficiency and safety. Therefore, security techniques that protect sensing data from security attacks and enable information systems to derive accurate information are essential. In this paper, we examine security threats targeting each processing step of an Internet of Things sensor-based information system and propose security mechanisms for each security threat. Furthermore, we present an Internet of Things sensor-based information system structure that is robust to security attacks by integrating the proposed security mechanisms. In the proposed system, by applying lightweight security techniques such as a lightweight encryption algorithm and obfuscation-based data validation, security can be secured with minimal processing delay even in low-power and low-performance IoT sensor devices. Finally, we demonstrate the feasibility of the proposed system by implementing and performance evaluating each security mechanism.

Internet of Things: An Overview and its Applications in Aviation (항공 분야에서의 사물인터넷 기술 현황)

  • Hyun, WooSeok
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.3
    • /
    • pp.100-107
    • /
    • 2020
  • Internet of Things (IoT) is a technology that communicates data between devices, which are things, using an embedded sensor connected through network backbone such as the internet. Here, data communication technology, sensor technology, and actuator (interface) technology are fused into IoT and it turns devices into smart things. As a result, vast sized data are being generated and that data is being processed into useful actions that can control the things that are devices to make our lives much fruitful. Nowadays, the IoT, early defined as Machine-to-Machine (M2M) connection, becomes a key technology powered by growing innovation of wireless communication trends in the internet connectivity through mobile networking. This paper gives an overview of Internet of Things and brief information about major technologies and its applications in various fields focusing aviation.

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao;Sin-Chi, Kuok;Ka-Veng, Yuen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.583-599
    • /
    • 2022
  • In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.

Fall Detection System based Internet of Things (사물인터넷 기반의 낙상 감지 시스템)

  • Jeong, Pil-Seong;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2546-2553
    • /
    • 2015
  • Falling can happen to anyone, anywhere at anytime and especially it is one of the risk factor that can lead causes of death of persons aged 65 and over. Recently, the study of fall detection mechanisms as a smart healthcare service based on the IoT(Internet of Things) are being actively investigated. In this paper, we implement a fall detection system using arduino as a smart sensor communicates with a smart device. When transmitting the information of the acceleration on a sensor smart sensor with a BLE(Bluetooth Low Energy), the smart device processing and analyzing this information. and determines a fall situation. A fall detection system based on the Internet of Things which using smart sensor and smart device, has the advantage of being able to overcome the mobility and portability constraints.

A Study on the Secure Communication at Android Things Environment using the SEED Library (SEED 암호 라이브러리를 활용한 안전한 Android Things 통신 환경연구)

  • Park, Hwa Hyeon;Yoon, Mi Kyung;Lee, Hyeon Ju;Lee, Hae Young;Kim, Hyung-Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.67-74
    • /
    • 2019
  • As the market for Internet of Things (IoT) service grows, the security issue of the data from IoT devices becomes more important. In this paper, we implemented a cryptographic library for confidentiality of sensor data from Android Things based IoT services. The library made use of the SEED algorithm for encryption/decryption of data and we verified the library by implementing a service environment. With the library, the data is securely encrypted and stored in the database and the service environment is able to represent the current sensing status with the decrypted sensor data. The contribution of this work is in verifying the usability of SEED based encryption library by implementation in IoT sensor based service environment.

Design of a Tag Antenna for UHF RFID Food Systems

  • Shin, Dong-Beom;Lee, Jung Nam;Lee, Heyung-Sub;Lee, Sang-Yeoun;Kim, Byeong-Sam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • This paper proposes a tag antenna for radio frequency identification (RFID) food system. The RFID tag antenna is designed and fabricated based on the rectangular loop concept used in the UHF band (Korean and Japanese standards, 916.7-923.5MHz). The proposed tag antenna is composed of a radiation patch, sensor tag chip, temperature sensor, oscillator, and battery. We conjugated matching between the tag antenna and the sensor tag using a U-shaped stub. Details of the proposed tag antenna design and the simulated and measured results are presented and discussed.

Design of Internet of Underwater Things Architecture and Protocol Stacks

  • Muppalla, Kalyani;Yun, Nam-Yeol;Park, Soo-Hyun;Kim, Changhwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.486-488
    • /
    • 2013
  • In the earth more than half of the space filled with water. In that water most of the part is in the form of oceans. The ocean atmosphere determines climate on the land. Combining the Underwater Acoustic Sensor Network (UWASN) system with Internet Of Things (IoT) is called Internet of Underwater Things (IoUT). Using IoUT we can find the changes in the ocean environment. Underwater sensor nodes are used in UWASN. Underwater sensor nodes are constructive in offshore investigation, disaster anticipation, data gathering, assisted navigation, pollution checking and strategic inspection. By using IoT components such as Database, Server and Internet, ocean data can be broadcasted. This paper introduces IoUT architecture and and explains fish forming application scenario with this IoUT architecture.