• Title/Summary/Keyword: sensitivity block

Search Result 166, Processing Time 0.029 seconds

Measurement of Behaviors of Optical Filter using Evanescent Field Coupling between Single Mode Fiber and Multimode Planar Waveguide (단일모드 광섬유와 다중모드 평면도파로의 소산장결합을 이용한 광필터의 동작특성 측정)

  • Kim, Kwang-Taek;Yu, Ho-Jong;Song, Jae-Won;Kim, Si-Hong;Kang, Shin-Won
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.42-49
    • /
    • 1999
  • In this paper, we proposed a simple measurement method to find the behaviors of the fiber-to-waveguide coupler. The polished fiber blocks and planar waveguides on silicon dioxide were fabricated independently and then optically coupled by physical pressure. Several kinds of polymer with different refractive indices were used for waveguide films. The proposed method makes it possible to measure the center wavelength, bandwidth, extinction ratio, and polarization dependence of the coupler during fabrication procedure. The wavelength sensitivity increased with refractive index of polymer. The symmetric planar waveguide structure and isotropic property of guiding materials reduced polarization dependent property. Insertion loss of the coupler was less than 0.5dB. It is expected that our measurement method is useful for developing various optical devices using evanescent coupling between polished fiber and planar waveguide such as optical modulators and filters etc.

  • PDF

Establishment and characterization of bortezomib-resistant U266 cell line: Constitutive activation of NF-κB-mediated cell signals and/or alterations of ubiquitylation-related genes reduce bortezomib-induced apoptosis

  • Park, Juwon;Bae, Eun-Kyung;Lee, Chansu;Choi, Jee-Hye;Jung, Woo June;Ahn, Kwang-Sung;Yoon, Sung-Soo
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.274-279
    • /
    • 2014
  • Bortezomib has been known as the most promising anti-cancer drug for multiple myeloma (MM). However, recent studies reported that not all MM patients respond to bortezomib. To overcome such a stumbling-block, studies are needed to clarify the mechanisms of bortezomib resistance. In this study, we established a bortezomib-resistant cell line (U266/velR), and explored its biological characteristics. The U266/velR showed reduced sensitivity to bortezomib, and also showed cross-resistance to the chemically unrelated drug thalidomide. U266/velR cells had a higher proportion of CD138 negative subpopulation, known as stem-like feature, compared to parental U266 cells. U266/velR showed relatively less inhibitory effect of prosurvival NF-${\kappa}B$ signaling by bortezomib. Further analysis of RNA microarray identified genes related to ubiquitination that were differentially regulated in U266/velR. Moreover, the expression level of CD52 in U266 cells was associated with bortezomib response. Our findings provide the basis for developing therapeutic strategies in bortezomib-resistant relapsed and refractory MM patients.

Automatic Detection of Initial Positions for Mass Segmentation in Digital Mammograms (디지털 마모그램에서 Mass형 유방암 분할을 위한 초기 위치 자동 검출)

  • Lee, Bong-Ryul;Lee, Myeong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.702-709
    • /
    • 2010
  • The performance of mass segmentation is greatly influenced by an initial position of a mass. Some researchers performed mass segmentation with the initial position of a mass given by radiologists. The purpose of our research is to find the initial position for mass segmentation and to notify the segmented mass to radiologists without any additional information on mammograms. The proposed system consists of breast segmentation by region growing and opening operations, decision of an initial seed with characteristics of masses, and mass segmentation by a level set segmentation. A seed for mass segmentation is set based on mass scoring measure calculated by block-based variances and masked information in a sub-sampled mammogram. We used a DDSM database to evaluate the system. The accuracy of mass detection is 78% sensitivity at 4 FP/image, and it reached 92% if multiple views for masses were considered.

A Quantitative Evaluation and Comparison of Harmonic Elimination Algorithms Based on Moving Average Filter and Delayed Signal Cancellation in Phase Synchronization Applications

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.717-730
    • /
    • 2016
  • The harmonic components of grid voltage result in oscillations of the calculated phase obtained via phase synchronization. This affects the security and stability of grid-connected converters. Moving average filter, delayed signal cancellation and their related harmonic elimination algorithms are major methods for such issues. However, all of the existing methods have their limitations in dealing with multiple harmonics issues. Furthermore, few studies have focused on a comparison and evaluation of these algorithms to achieve optimal algorithm selections in specific applications. In this paper, these algorithms are quantitatively analyzed based on the derived mathematical models. Moreover, an enhanced moving average filter and enhanced delayed signal cancellation algorithms, which are applicable for eliminating a group of selective harmonics with only one calculation block, are proposed. On this basis, both a comprehensive comparison and a quantitative evaluation of all of the aforementioned algorithms are made from several aspects, including response speed, required data storage size, sensitivity to sampling frequency, and elimination of random noise and harmonics. With the conclusions derived in this paper, better overall performance in terms of harmonic elimination can be achieved. In addition, experimental results under different conditions demonstrate the validity of this study.

Intrathecal Administration of Mesenchymal Stem Cells Reduces the Reactive Oxygen Species and Pain Behavior in Neuropathic Rats

  • Zhang, En Ji;Song, Chang Hwa;Ko, Young Kwon;Lee, Won Hyung
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.239-245
    • /
    • 2014
  • Background: Neuropathic pain induced by spinal or peripheral nerve injury is very resistant to common pain killers, nerve block, and other pain management approaches. Recently, several studies using stem cells suggested a new way to control the neuropatic pain. In this study, we used the spinal nerve L5 ligation (SNL) model to investigate whether intrathecal rat mesenchymal stem cells (rMSCs) were able to decrease pain behavior, as well as the relationship between rMSCs and reactive oxygen species (ROS). Methods: Neuropathic pain of the left hind paw was induced by unilateral SNL in Sprague-Dawley rats (n = 10 in each group). Mechanical sensitivity was assessed using Von Frey filaments at 3, 7, 10, 12, 14, 17, and 24 days post-ligation. rMSCs ($10{\mu}l$, $1{\times}10^5$) or phosphate buffer saline (PBS, $10{\mu}l$) was injected intrathecally at 7 days post-ligation. Dihydroethidium (DHE), an oxidative fluorescent dye, was used to detect ROS at 24 days post-ligation. Results: Tight ligation of the L5 spinal nerve induced allodynia in the left hind paw after 3 days post-ligation. ROS expression was increased significantly (P < 0.05) in spinal dorsal horn of L5. Intrathecal rMSCs significantly (P < 0.01) alleviated the allodynia at 10 days after intrathecal injection (17 days post-ligation). Intrathecal rMSCs administration significantly (P < 0.05) reduced ROS expression in the spinal dorsal horn. Conclusions: These results suggest that rMSCs may modulate neuropathic pain generation through ROS expression after spinal nerve ligation.

Design and performance analysis of turbo codes employing the variable-sized interleaver (가변 크기 인터리버를 사용한 turbo 부호의 설계와 성능 해석)

  • Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.86-95
    • /
    • 2003
  • With the advent of future mobile communication systems, the wireless transmission of the huge amount of multimedia data over the error-prone multipath fading channel has to overcome the inherent sensitivity to channel errors. To alleviate the effect of the channel errors, hosts of techniques based on the forward error correction(FEC) has been proposed at the cost of overhead rate. Among the FEC techniques, turbo code, whose performance has been shown to be very close to the Shannon limit, can be classified as a block-based error correction code. In this paper, considering the variable packet size of the multimedia data, we analyzed turbo codes employing the variable-sized interleaver. The effect of the various parameters on the BER performance is analyzed. We show that the turbo codes can be used as efficient error correction codes of multimedia data.

An Efficient UEP Transmission Scheme for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 효율적인 UEP 전송기법 제안)

  • Lee, Heun-Chul;Lee, Byeong-Si;Sundberg, Carl-Erik W.;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.469-477
    • /
    • 2007
  • Most multimedia source coders exhibit unequal bit error sensitivity. Efficient transmission system design should therefore incorporate the use of matching unequal error protection (UEP). In this paper, we present and evaluate a flexible space-time coding system with unequal error protection. Multiple transmit and receive antennas and bit-interleaved coded modulation techniques are used combined with rate compatible punctured convolutional codes. A near optimum iterative receiver is employed with a multiple-in multiple-out inverse mapper and a MAP decoder as component decoders. We illustrate how the UEP system gain can be achieved either as a power or bandwidth gain compared to the equal error protection system (EEP) for the identical source and equal overall quality for both the UEP and EEP systems. An example with two/three transmit and two receive antennas using BPSK modulation is given for the block fading channel.

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

Economic Analysis of Growing Ginger (Zingiber officinale) Under Teak (Tectona grandis) Canopy in Southwest Nigeria

  • Oladele, Adekunle Tajudeen;Popoola, Labode
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.147-156
    • /
    • 2013
  • Multiple use forestry is capable of generating income for forest based communities through Non-Timber forest products (NTFPs) which provide food, medicine, materials for domestic use and cash income for communities adjoining forest areas in developing countries. This study evaluates the economics of producing ginger rhizomes under teak canopy in a multiple land use system during 2007 and 2008 in even aged teak plantations in Ibadan and Ife, Nigeria. Twelve $6m^2$ sample plots were randomly selected in Completely Randomized Block Design within and outside the plantation. Average ginger rhizome of (50-60 g) were planted on the slightly tilled soil. NPK 15:15:15 was applied at 180 kg/ha on a split unit dose. ANOVA, Profitability, Benefit-Cost (B/C) ratio were used to analyze data. Results showed no significant differences between sites in ginger rhizome yield, (0.089 and 0.718, ${\rho}{\leq}0.05$) in 2007 and 2008 respectively. Average yield were higher outside teak canopy in both sites and treatments, (Ibadan -40.05 g>32.9 g, Ife -67.6 g>25.2 g and Ibadan -41.3 g>31.5 g, Ife -66.8 g>25.0 g) with and without NPK respectively. NPK had no effect on yields within teak plantation, (Ibadan -31.5<32.9 g, Ife -25 g<25.2 g). Ginger rhizome production was viable financially without inorganic fertilizer during second cropping season within and outside plantation (B/C=1.02, 1.09) respectively. Ginger could be raised profitably under teak canopy, however, studies on insolation requirement of ginger under teak canopy and other tree plantations are recommended.

Three-dimensional Resistivity Inversion Including Topographic Effect (지형효과를 포함한 3차원 전기비저항 역산)

  • 박종오;김희준;송무영
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Three-dimensional (3-D) resistivity inversion including a topographic effect can be considered theoretically to be the technique of acquiring the most accurate image in the interpretation of resistivity data, because it includes characteristic image that the actual subsurface structure is 3-D. In this study, a finite-element method was used as the numerical method in modeling, and the efficiency of Jacobian calculation has been maximized with sensitivity analysis for the destination block in inversion process. Also, during the iterative inversion, the resolution of inversion can be improved with the method of selecting the optimal value of Lagrange multiplier yielding minimum RMS(root mean square) error in the parabolic equation. In this paper, we present synthetic examples to compare the difference between the case which has the toprographic effect and the other case which has not the effect in the inversion process.