• 제목/요약/키워드: sensing radius

검색결과 68건 처리시간 0.026초

Non-cooperative interference radio localization with binary proximity sensors

  • Wu, Qihui;Yue, Liang;Wang, Long;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3432-3448
    • /
    • 2015
  • Interference can cause serious problems in our daily life. Traditional ways in localizing a target can't work well when it comes to the source of interference for it may take an uncooperative or even resistant attitude towards localization. To tackle this issue, we take the BPSN (Binary Proximity Sensor Networks) and consider a passive way in this paper. No cooperation is needed and it is based on simple sensor node suitable for large-scale deployment. By dividing the sensing field into different patches, when enough patches are formed, good localization accuracy can be achieved with high resolution. Then we analyze the relationship between sensing radius and localization error, we find that in a finite region where edge effect can't be ignored, the trend between sensing radius and localization error is not always consistent. Through theoretical analysis and simulation, we explore to determine the best sensing radius to achieve high localization accuracy.

CSMA 기반 무선 애드 혹 네트워크에서 반송파 감지 반경의 반복적 근사 기법 (Iterative Approximation of Carrier Sensing Radius in CSMA-based Wireless Ad Hoc Networks)

  • 설재영;김성륜
    • 한국통신학회논문지
    • /
    • 제36권12A호
    • /
    • pp.1006-1014
    • /
    • 2011
  • 최근 CSMA가 많은 무선 환경에서 적용됨에 따라 CSMA 기반의 우선 네트워크의 성능을 높이기 위한 다양한 통계적 분석이 수행되고 있다. 그러나 이러한 노력에도 불구하고 여전히 CSMA가 가지고 있는 작위적 특성은 네트워크의 분석을 어렵게 만들고 있다. 기존의 많은 연구들은 대규모 CSMA 네트워크의 통계적 분석에서 노드의 반송파 감지 기능을 표현하기 위해 반송파 감지 반경을 도입하여 사용해 왔다. 그러나 반송파 감지 반경은 노드의 전송 여부에 따른 노드 간 간섭효과를 고려하지 않기 때문에 간섭이 큰 채널 환경에 적용되는 경우 분석 오류를 피하기 어렵다. 본 연구에서는 이러한 문제점을 해결하고자 노드 간 간섭효과를 고려한 물리적 모델 기반의 반송파 감지 반경을 유도하는 알고리즘을 제안한다. 이를 위해 대규모 CSMA 네트워크에서의 반송파 감지 동작 특성과 이에 따른 간섭효과를 분석하고, 분석 결과를 토대로 물리 모델에 근사된 반송파 감지 반경을 찾기 위한 감지 반경의 반복적 근사 기법을 제안한다. 제안된 알고리즘의 적합성을 확인하기 위해 모의실험을 통해 제안된 감지 반경을 이용해 다양한 채널 환경에서 유도된 총 간섭 모델의 정확성을 비교 분석하였다.

Detection of The Pine Trees Damaged by Pine Wilt Disease using High Resolution Satellite and Airborne Optical Imagery

  • Lee, Seung-Ho;Cho, Hyun-Kook;Lee, Woo-Kyun
    • 대한원격탐사학회지
    • /
    • 제23권5호
    • /
    • pp.409-420
    • /
    • 2007
  • Since 1988, pine wilt disease has spread over rapidly in Korea. It is not easy to detect the damaged pine trees by pine wilt disease from conventional remote sensing skills. Thus, many possibilities were investigated to detect the damaged pines using various kinds of remote sensing data including high spatial resolution satellite image of 2000/2003 IKONOS and 2005 QuickBird, aerial photos, and digital airborne data, too. Time series of B&W aerial photos at the scale of 1:6,000 were used to validate the results. A local maximum filtering was adapted to determine whether the damaged pines could be detected or not at the tree level from high resolution satellite images, and to locate the damaged trees. Several enhancement methods such as NDVI and image transformations were examined to find out the optimal detection method. Considering the mean crown radius of pine trees, local maximum filter with 3 pixels in radius was adapted to detect the damaged trees on IKONOS image. CIR images of 50 cm resolution were taken by PKNU-3(REDLAKE MS4000) sensor. The simulated CIR images with resolutions of 1 m, 2 m, and 4 m were generated to test the possibility of tree detection both in a stereo and a single mode. In conclusion, in order to detect the pine tree damaged by pine wilt disease at a tree level from satellite image, a spatial resolution might be less than 1 m in a single mode and/or 1 m in a stereo mode.

Pupil plane wavefront sensing with a static pyramidal prism: Simulation and preliminary evaluation

  • Lee, Jun-Ho;Doel, A.P.;Walker, D.D.
    • Journal of the Optical Society of Korea
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2000
  • Adaptive optics(AO) removes or compensates the distortion caused by a turbulent atmosphere or medium. A wavefront sensormeasures the distortion, on which the correction of AO is based. A new idea of pupil plane wavefront sensing, which consists of a relay lens and a pyramidal-shaped prism, was previously proposed. This paper reviews the idea of pupil wavefrontsensing and presents prism, was previously proposed. The simulation shows that pupilwavefront sensing provides full wavefront sensing when the intensity peak of PSF is located within half of the Airy radius from the apex of the sensor. Adding to this, the sensor is shown to have optimum sensor output with a finite bevel size of the pyramidal prism.

A Density-Based K-Nearest Neighbors Search Method

  • Jang I. S.;Min K.W.;Choi W.S
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.260-262
    • /
    • 2004
  • Spatial database system provides many query types and most of them are required frequent disk I/O and much CPU time. k-NN search is to find k-th closest object from the query point and up to now, several k-NN search methods have been proposed. Among these, MINMAX distance method has an aim not to visit unnecessary node by applying pruning technique. But this method access more disk than necessary while pruning unnecessary node. In this paper, we propose new k-NN search algorithm based on density of object. With this method, we predict the radius to be expected to contain k-NN object using density of data set and search those objects within this radius and then adjust radius if failed. Experimental results show that this method outperforms the previous MINMAX distance method. This algorithm visit fewer disks than MINMAX method by the factor of maximum $22\%\;and\;average\;6\%.$

  • PDF

기둥형 로드셀 감지부의 설계변수에 따른 비선형 거동해석 (Finite Element Analysis of Nonlinear Behavior of a Column Type Sensing Element for Load Cell According to Design Parameters)

  • 이춘열;강대임
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1540-1546
    • /
    • 2000
  • Recently, force measurement systems are commonly used in many industrial fields and the precision of the measurement system is getting more important as the industry needs more precise tools and in struments to make high quality products. However, a high precision force measurement system is hard to make unless we know precisely the causes, quality and quantity of measurement errors in advance. In this work, many possible mechanical causes of measurement errors are reviewed including ratio of length to diameter of sensing part, radius of contact area, radius of bearing part, ratio of material properties and change of boundary conditions. Also, the measurement errors are analyzed by nonlinear finite element method and the nonlinear behavior of the errors are investigated. The results can be used to design force measurement systems and expected to be very useful especially for compact type load cells.

Retrieval of High-Resolution Grid Type Visibility Data in South Korea Using Inverse Distance Weighting and Kriging

  • Kang, Taeho;Suh, Myoung-Seok
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.97-110
    • /
    • 2021
  • Fog can cause large-scale human and economic damages, including traffic systems and agriculture. So, Korea Meteorological Administration is operating about 290 visibility meters to improve the observation level of fog. However, it is still insufficient to detect very localized fog. In this study, high-resolution grid-type visibility data were retrieved from irregularly distributed visibility data across the country. To this end, three objective analysis techniques (Inverse Distance Weighting (IDW), Ordinary Kriging (OK) and Universal Kriging (UK)) were used. To find the best method and parameters, sensitivity test was performed for the effective radius, power parameter and variogram model that affect the level of objective analysis. Also, the effect of data distribution characteristics (level of normality) on the performance level of objective analysis was evaluated. IDW showed a relatively high level of objective analysis in terms of bias, RMSE and correlation, and the performance is inversely proportional to the effective radius and power parameter. However, the two Krigings showed relatively low level of objective analysis, in particular, greatly weakened the variability of the variables, although the level of output was different depending on the variogram model used. As the level of objective analysis is greatly influenced by the distribution characteristics of data, power, and models used, care should be taken when selecting objective analysis techniques and parameters.

Sensing Characteristics of Uncoated Double Cladding Long-period Fiber Grating Based on Mode Transition and Dual-peak Resonance

  • Zhou, Yuan;Gu, Zheng Tian;Ling, Qiang
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.243-249
    • /
    • 2021
  • In this paper, the sensing characteristics of a double cladding fiber (DCF) long-period fiber grating (LPFG) to the surrounding refractive index (SRI) are studied. The outer cladding of the DCF plays the role of the overlay, thus, the mode transition (MT) phenomenon of DCF can be induced by etching the outer cladding radius instead of coating overlays. The response characteristics of the effective refractive index (ERI) of the cladding mode to the outer cladding radius are analyzed. It is found that in the MT range, the change rate of ERIs of cladding modes is relatively larger than that for other ranges. Further, based on the features of the mode transition region (MTR), the phase-matching curve of the 11th cladding mode is investigated, and the response of the DCF-LPFG to the SRI is characterized by the change of wavelength intervals between the dual peaks under different outer cladding radii. The numerical simulation results show that the SRI sensitivity is greatly improved, which is available to 3484.0 nm/RIU with the fitting degree 0.998 in the SRI range of 1.33-1.37. The proposed DCF-LPFG can provide new theoretical support for designing the DCF-LPFG refractive index sensor with excellent performances of sensitivity, linearity and structure.

로봇형 차량의 자율주행을 위한 센서 기반 운동 계획법 개발 (Development of Sensor-based Motion Planning Method for an Autonomous Navigation of Robotic Vehicles)

  • 김동형;김창준;이지영;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.513-520
    • /
    • 2011
  • This paper presents the motion planning of robotic vehicles for the path tracking and the obstacle avoidance. To follow the given path, the vehicle moves through the turning radius obtained through the pure pursuit method, which is a geometric path tracking method. In this paper, we assume that the vehicle is equipped with a 2D laser scanner, allowing it to avoid obstacles within its sensing range. The turning radius for avoiding the obstacle, which is inversely proportional to the virtual force, is then calculated. Therefore, these two kinds of the turning radius are used to generate the steering angle for the front wheel of the vehicle. And the vehicle reduces the velocity when it meets the obstacle or the large steering angle using the potentials of obstacle points and the steering angle. Thus the motion planning of the vehicle is done by planning the steering angle for the front wheels and the velocity. Finally, the performance of the proposed method is tested through simulation.

지상원격탐사를 이용한 에어러솔 간접효과 연구 (Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings)

  • 김병곤;권태영
    • 한국대기환경학회지
    • /
    • 제22권2호
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.