• Title/Summary/Keyword: sensible heat

검색결과 334건 처리시간 0.026초

흡기조건의 변화에 따른 공기조화용 회전재생기에 관한 실험적 연구 (An Experimental Study on the Rotary Regenerator for Air Conditioning according to Variable Inlet Conditions)

  • 이태우;조진호;서정일
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.422-429
    • /
    • 1990
  • The experimental study investigates two aspects of counterflow sensible heat regenerator operation. First, it examines the regenerator performance in periodic steady state operation with spatially nonuniform inlet temperature in one of the fluid stream. Second, the study examines the transient response of a regenerator to a step change in the inlet temperature of one of the fluid streams. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change of temperature nonuniformities is analyzed in terms of the change in steady state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. an experimental analysis has been conducted using a counterflow, parallel passage, and rotary regenerator made from polyethylene film. Efficiencies follow similar trends with increasing matrix to fluid capacity rate ratio for the balanced and symmetric regenerator with nonuniform inlet temperature.

공동주택의 준공연도에 따른 단열성능 평가 및 에너지소비 특성에 관한 연구 (Energy Consumption Characteristics and Evaluation of Thermal Insulation Performance in Accordance with Built Year of Apartment Complex)

  • 최두성;이명은;전흥찬
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.79-86
    • /
    • 2014
  • Studies have shown that the thermal performance of buildings changes depending on the year of construction completion. It leads to increased energy consumption of buildings and significant financial burden on users. Thus, this study has calculated the thermal insulation performance of 86 apartments quantitatively, using temperature difference ratio and sensible heat flux. Also, energy consumption characteristics depending on the year of construction completion and thermal insulation performance were analyzed by comparatively analyzing the results of insulation performance evaluation and heating costs. The analysis results are as follows. As for thermal insulation performance, it was around 70% lower in the apartments completed before 1985, compared to apartments completed after 2010. As for heating costs, the apartments with the highest heating cost incurred 1.5 higher heating cost than the apartment with the lowest heating cost. In terms of the insulation performance evaluation, the difference was 2.5-fold.

A Simple Mlodel for Dispersion in the Stable Boundary Layer

  • Sung-Dae Kang;Fuj
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1992
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are "A" and "B" at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.al dispersion model.

  • PDF

Terra MODIS 위성영상과 METRIC 모형을 이용한 전국 증발산량 산정 (Estimation of evapotranspiration in South Korea using Terra MODIS images and METRIC model)

  • 김진욱;이용관;정지훈;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.103-103
    • /
    • 2019
  • 본 연구에서는 Terra MODIS 위성영상과 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 모형을 이용하여 2012년부터 2017년까지 한반도 전국의 증발산량을 산정하고 플럭스 타워 실측 증발산량과 비교하였다. METRIC은 전 세계에 널리 적용된 바 있는 에너지 수지 기반의 Surface Energy Balance Algorithm for Land (SEBAL) 모형의 개념과 기술을 기반으로 현열(Sensible Heat Flux) 추정 모듈을 개선한 모형이다. 본 연구에서 METRIC 모형은 기존 C#으로 개발되어 있던 SEBAL 코드에서 현열 추정 모듈을 수정하였고 연산 속도 개선을 위해 Python으로 재작성하였다. METRIC 모형의 위성 자료로 Terra MODIS 위성의 MOD13A2(16day, 1km) NDVI, MOD11A1(Daily, 1km) Land Surface Temperature (LST) 및 MCD43A3(Daily, 500m) Albedo를 구축하였으며 500m 공간해상도의 Albedo는 1000m 해상도로 resample하여 활용하였다. 기상자료는 기상청 기상관측소의 풍속, 풍속측정높이, 습도, 10분 간격 이슬점 온도, 일사량 자료를 위성 자료와 같은 공간해상도로 내삽(Interpolation)하여 구축하였다. 모형결과 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측 자료와의 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error) relative RMSE (RMSE%), Nash-Sutcliffe efficiency (NSE) 및 IOA(Index of Agreement)를 산정하고, 기존 SEBAL 모형 결과와의 비교를 통해 본 모형의 개선점을 보이고자 한다.

  • PDF

액체식 태양열난방계통에 관한 연구 (A Study on the liquid Type Solar Heating System)

  • 남평우
    • 대한설비공학회지:설비저널
    • /
    • 제8권4호
    • /
    • pp.221-236
    • /
    • 1979
  • The three years Performance of a liquid type solar heating system has been determined for a system which has been determined for a system which has been operating continuously since 1976 in Seoul with no serious maintenance. A flat plate collector is used to transform incident solar radiation into thermal energy. This energy is stored if the form of sensible energy and used as needed to supply the space heating loads. An electric auxiliary heaters are provided to supply energy for space heating load when the energy in the storage tank is depleted. The ratio of useful collected solar heat divided by the total solar radiation on the collector was obtained about 84 per cent. It is also obtained the relation between ratio of solar collector area to the heating area and the ratio of useful collected solar energy to the heating load for the useful design data. A comparison between the measured and simulated results with the solar space heating system is described. Hour by hour simulation is made on unsteady state basis using the system parameters and meteorological data at the experiment site. The result of comparison turned out satisfactory for the solar heating system, though the simulation was formed somewhat higher than by experimental.

  • PDF

ENHANCING TIG WELD PERFORMANCE THROUGH FLUX APPLICATION ATIG AND FBTIG PROCESSES

  • Marya, S.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.70-75
    • /
    • 2002
  • The penetration potential of TIG welding in one single run is limited, though the process itself generates high quality welds with good weld cosmetics. This is one of the main reasons, which has contributed to its development in high duty applications such as those encountered in aeronautical, aerospace, nuclear & power plant applications. For these applications, stainless steels, titanium k nickel based alloys are most often used. As these materials remain very sensible to weld heat input k atmospheric pollution, stringent processing conditions are imposed. For example welding of titanium alloys requires argon shielding of weld zone and for 5 mm thick plates multi-pass runs & filler additions are required. This multi-run operation not only raises the welding cost, but also increases defect risks. In recent years, extensive interest has been raised by the possibility to increase weld penetrations through flux applications & the process is designated ATIG-activated TIG, or FBTIG-flux bounded TIG. The improved welding performance of such flux assisted TIG is related to arc constriction and surface tension effects on weld pool. The research work by authors has lead to the formulation of welding fluxes for stainless steels k titanium alloys with TIG Process. These fluxes are now commercialized & some applications in industry have already been carried out. FBTIG for aluminum has been proposed with silica application for AC mode TIG welding. The paper highlights the fundamentals of flux role in TIG welding and illustrates some industrial applications.

  • PDF

보수성 도로 포장재의 증발효율 변화에 의한 중규모 순환장 특성 분석 (The Analysis of Mesoscale Circulations Characteristics Caused by the Evaporation-Efficiency of Water Retention Pavement)

  • 김인수;이순환;김해동;서영찬
    • 한국지구과학회지
    • /
    • 제30권6호
    • /
    • pp.709-720
    • /
    • 2009
  • 보수성 포장재가 지표면 열수지와 중규모 순환장에 미치는 영향을 파악하기 위하여 수치실험과 야외 관측을 실시하였다. 수치실험에 이용된 모형은 LCM(Local Circulation Model)이며, 야외 관측은 대기가 안정되어 날씨가 맑은 2007년 7월 19일 실시되었다. 야외 관측실험에서 보수성 포장재 지표면 온도의 최대치는 1430 LST에서 $41.2^{\circ}C$이고, 보수성 재료가 도포되어 있지 않은 일반 아스팔트보다 $16.1^{\circ}C$ 낮게 관측되었다. 수치실험에서는 증발효율 0.3을 가정한 case BET03에서 관측과 가장 유사한 값을 나타내었다. 이때 현열과 잠열플럭스는 각각 227 와 229 $W/m^2$이다. 수치실험 결과, 보수성 포장재는 낮은 지표면 온도, 혼합고와 관련된 잠열플럭스를 높이는 경향이 나타난다. 보수성 포장재에 의한 잠열플럭스의 불연속은 교외풍과 같은 중규모 순환장의 발달을 강화시키는 역할을 한다.

충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석 (Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage)

  • 박정욱;류동우;박도현;최병희;신중호;선우춘
    • 터널과지하공간
    • /
    • 제23권3호
    • /
    • pp.241-259
    • /
    • 2013
  • 충전층을 이용한 열에너지저장 시스템은 자갈이나 콘크리트와 같은 열저장매질과 공기나 오일과 같은 열전달유체를 이용하여 현열에너지를 저장하는 방식으로서, 저장매질의 경제성과 화학적 안정성, 시스템 구축의 용이성 등 많은 장점이 갖는다. 본 연구에서는 충전층을 이용한 열에너지저장 기술에 대하여 개략적으로 소개하고, 이러한 열에너지저장소의 에너지 수지와 성능 효율을 분석하기 위한 수치 모델을 제시하였다. 유한차분법을 이용하여 저장소 내 1차원 비정상 열전달 해석을 수행하였으며, 반복적인 주입과 토출에 따른 충전층의 온도분포와 외부로의 손실 에너지를 계산하였다. 해석모델은 AA-CAES(advanced adiabatic compressed air energy storage)와 연계된 고온의 열에너지저장시스템으로 저장소가 지하암반 내에 위치하는 경우와 지상에 위치하는 경우를 모사하고, 성능효율 및 열손실률을 비교 분석하였다.

300MW 태안 IGCC 플랜트 종합성능 특성 (Overall Performance characteristic for 300MW Taean IGCC Plant)

  • 김학용;김재환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

초미세입자 제거를 위한 고온용 나노 세라믹 필터 개발 (Development of Nano Ceramic Filter for the Removal of Ultra Fine Particles)

  • 김종원;안영철;이병권;정현재
    • 설비공학논문집
    • /
    • 제22권1호
    • /
    • pp.13-20
    • /
    • 2010
  • Airborne particulate matters have two modes of size distributions of coarse mode and fine mode. The coarse mode which is formed by break down mechanism of large particles has a peak around the $100\;{\mu}m$, and the fine mode formed by condensation and build up mechanism of evaporated vapors has a peak at several ${\mu}m$. The coarse mode particles can be removed easily by conventional collecting equipments such as a cyclone, an electrostatic precipitator, and a filter, however the fine mode particles can not be collected easily. Usually the fine mode particles are generated in the high temperature conditions especially through boilers and incinerators, so the high efficient and temperature filter is essential for the filtration. In this study, a nano ceramic filter for the removal of fine particles in the high temperature is developed and tested for several characteristics. The nano ceramic filter has double layer of micro and nano structure and the pressure drop and the filtration efficiency for $0.31\;{\mu}m$ at 3 cm/s are 15.45 mmAq, and 96.75%, respectively. The thermal conductivity is $0.038\;W/m{\cdot}K$, and the coefficient of water vapor permeability is $3.63\;g/m^2{\cdot}h{\cdot}mmHg$. It is considered that the sensible heat exchange rate is very poor because the low thermal conductivity but it has high potential to exchange latent heat.