• Title/Summary/Keyword: seminormal

Search Result 3, Processing Time 0.017 seconds

GENERALIZED NORMALITY IN RING EXTENSIONS INVOLVING AMALGAMATED ALGEBRAS

  • Kwon, Tae In;Kim, Hwankoo
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.701-708
    • /
    • 2018
  • In this paper, seminormality and t-closedness in ring extensions involving amalgamated algebras are studied. Let $R{\subseteq}T$ be a ring extension with ideals $I{\subseteq}J$, respectively such that J is contained in the conductor of R in T. Assume that T is integral over R. Then it is shown that ($R{\bowtie}I$, $T{\bowtie}J$) is a seminormal (resp., t-closed) pair if and only if (R, T) is a seminormal (resp., t-closed) pair.

NOTES ON GRADING MONOIDS

  • Lee, Je-Yoon;Park, Chul-Hwan
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.189-194
    • /
    • 2006
  • Throughout this paper, a semigroup S will denote a torsion free grading monoid, and it is a non-zero semigroup with 0. The operation is written additively. The aim of this paper is to study semigroup version of an integral domain ([1],[3],[4] and [5]).

  • PDF

PROPERTIES OF HURWITZ POLYNOMIAL AND HURWITZ SERIES RINGS

  • Elliott, Jesse;Kim, Hwankoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.837-849
    • /
    • 2018
  • In this paper, we study the closedness such as seminomality and t-closedness, and Noetherian-like properties such as piecewise Noetherianness and Noetherian spectrum, of Hurwitz polynomial rings and Hurwitz series rings. To do so, we construct an isomorphism between a Hurwitz polynomial ring (resp., a Hurwitz series ring) and a factor ring of a polynomial ring (resp., a power series ring) in a countably infinite number of indeterminates.