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PROPERTIES OF HURWITZ POLYNOMIAL AND HURWITZ

SERIES RINGS

Jesse Elliott and Hwankoo Kim

Abstract. In this paper, we study the closedness such as seminoma-

lity and t-closedness, and Noetherian-like properties such as piecewise
Noetherianness and Noetherian spectrum, of Hurwitz polynomial rings

and Hurwitz series rings. To do so, we construct an isomorphism be-
tween a Hurwitz polynomial ring (resp., a Hurwitz series ring) and a

factor ring of a polynomial ring (resp., a power series ring) in a countably

infinite number of indeterminates.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with unity.
The ring of Hurwitz series has been studied by many authors, in partic-

ular by Keigher and Pritchard [15] and Benhissi and Koja [4]. Keigher and
Pritchard demonstrated that, closely related to the power series ring, the ring
of Hurwitz series over a commutative ring with identity has many interesting
properties, including applications to differential algebra. Then Benhissi and
Koja studied the transfer of some ring properties from the ground ring to the
ring of Hurwitz series. In [17, 18], Lim and Oh studied some chain conditions
on composite Hurwitz rings. In this paper, we study the transfer of closed-
ness and Noetherian-like properties between the ground ring and the Hurwitz
polynomial ring and the Hurwitz power series ring. To do so, we construct an
isomorphism between the Hurwitz polynomial ring (resp., the Hurwitz series
ring) and a factor ring of a polynomial ring (resp., the power series ring) in a
countably infinite number of indeterminates.

Hurwitz series rings and Hurwitz polynomial rings are defined as follows.
Let R be a commutative ring. We let R[[X]]H (“H” stands for “Hurwitz”) be
the set of formal expressions of the form f =

∑∞
i=0 fiX

[i], where fi ∈ R. Let

g =
∑∞

i=0 giX
[i], where gi ∈ R. Then define f + g =

∑∞
i=0(fi + gi)X

[i] and

f ∗ g =
∑∞

n=0 hnX
[n], where hn =

∑n
k=0

(
n
k

)
fkgn−k for all n. With these
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two operations R[[X]]H is a commutative ring with identity containing R called
the ring of Hurwitz series over R. Similarly we can define the ring R[X]H of
Hurwitz polynomials over R, which is a subring of R[[X]]H. The association

f 7−→
∑∞

n=0
fn
n!X

n defines ring homomorphisms R[[X]]H −→ (R ⊗Z Q)[[X]]
and R[X]H −→ (R ⊗Z Q)[X]. If R is a Z-torsion-free ring, then these two
homomorphisms are inclusions, X [n] can be identified with Xn/n! for all n,
and R[[X]]H (resp., R[X]H) can be identified with its image in (R ⊗Z Q)[[X]]
(resp., (R⊗Z Q)[X]).

All notation will be standard, unless otherwise noted. In particular, denote
by Z the ring of integers and Q the field of rational numbers.

2. Generalized power series rings

Let (S,≤) be an ordered set. The ordered set (S,≤) is artinian if every
strictly decreasing sequence of elements of S is finite, and (S,≤) is narrow if
every subset of pairwise order-incomparable elements of S is finite. It is easy
to see that (S,≤) is artinian if and only if every non-empty subset of S has a
minimal element. Moreover, if ≤ is a total order, then (S,≤) is artinian if and
only if it is well-ordered. (S,≤) is a strictly ordered monoid if s, s′, t ∈ S and
s < s′ imply s + t < s′ + t. Note that if S is cancellative or if ≤ is the trivial
order (i.e., x ≤ y implies x = y), then (S,≤) is a strictly ordered monoid.

The following definition is due to Ribenboim [8]: Let (S,≤) be a strictly
ordered monoid and let R be a commutative ring. Let [[RS,≤]] be the set of
all functions f : S −→ R such that Supp(f) = {s ∈ S | f(s) 6= 0} is artinian
and narrow. It is clear that [[RS,≤]] is an additive abelian group with point-
wise addition. For every s ∈ S and f1, . . . , fn ∈ [[RS,≤]], let Xs(f1, . . . , fn) =
{(u1, . . . , un) ∈ Sn | s = u1 + · · · + un, ui ∈ Supp(fi) for each i}. It follows
from [8, (e) p. 368] that Xs(f1, . . . , fn) is finite. This fact allows one to define
the operation of convolution ∗ as following;

(f ∗ g)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

With this operation, and pointwise addition, [[RS,≤]] becomes a commutative
ring with identity element e, where

e(s) = δ0s =

{
1 if s = 0,
0 if 0 6= s ∈ S.

We call [[RS,≤]] the ring of generalized power series. It should be noted that the
definition of [[RS,≤]] depends on the order ≤; for example, see [8, p. 371]. It
follows from [8, p. 368] that R is canonically embedded as a subring of [[RS,≤]],
and that S is canonically embedded as a submonoid of the monoid ([[RS,≤]], ∗)
via the map s 7−→ (es : t 7−→ δst).

Let N(ℵ0) denote the monoid
⊕∞

i=1 N, where N denotes the monoid of non-
negative integers under addition. Let o(n) =

∑∞
i=1 ini ∈ N for all n = (ni)

∞
i=1 ∈

N(ℵ0), so that o : N(ℵ0) −→ N is a monoid homomorphism. Define an ordering
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≤ on N(ℵ0) by declaring n <m if and only if o(n) < o(m). Then (N(ℵ0),≤) is
a strictly ordered monoid, and, since for any r ∈ N there are only finitely many
n ∈ N(ℵ0) with o(n) ≤ r, the ordered monoid (N(ℵ0),≤) is artinian and narrow.

We let R[[X1, X2, . . .]] denote the ring [[RN(ℵ0),≤]]. Elements of R[[X1, X2, . . .]]
are functions f : N(ℵ0) −→ R, where

(f + g)(s) = f(s) + g(s)

and
(fg)(s) =

∑
l+m=s

l∈Supp(f)
m∈Supp(g)

f(l)g(m) for any s ∈ N(ℵ0).

For n = (ni)
∞
i=1 ∈ N(ℵ0), one denotes by Xn the element en of R[[X1, X2, . . .]].

Elements of R[[X1, X2, . . .]] can be written as formal sums
∑

n∈N(ℵ0) fnX
n.

Remark 2.1. In the literature, the ring R[[X1, X2, . . .]] is often denoted
R[[X1, X2, . . .]]3, to distinguish it from two of its subrings, R[[X1, X2, . . .]]1 and
R[[X1, X2, . . .]]2 ⊇ R[[X1, X2, . . .]]1. The ring R[[X1, X2, . . .]]1 is defined to be⋃∞

n=1R[[X1, X2, . . . , Xn]], which is the direct limit of

R[[X1]] −→ R[[X1, X2]] −→ R[[X1, X2, X3]] −→ · · · .

The ring R[[X1, X2, . . .]]2 is the ring [[RN(ℵ0),≤2 ]], where N(ℵ0) is ordered by
relation ≤2 determined by the usual degree map n 7−→

∑∞
i=1 ni, instead of

the map o. Elements of R[[X1, X2, . . .]]2 are series in R[[X1, X2, . . .]] of the form∑∞
i=0 fi with fi ∈ R[X1, X2, . . .] homogeneous of degree i for all i.

There is a natural non-archimedean norm on the ring R[[X1, X2, . . .]] defined
as follows. Consider Xn as degree n and extend multiplicatively on elements
of the form Xn, so that degXn =

∑∞
i=1 ini = o(n). For all f ∈ R[[X1, X2, . . .]],

let
deg f = min{degXn : n ∈ Supp(f)} = min{o(n) : n ∈ Supp(f)}

if f 6= 0, and deg 0 =∞. One has the following for all f, g ∈ R[[X1, X2, . . .]].

(1) deg f ∈ N ∪ {∞}.
(2) deg f =∞ if and only if f = 0.
(3) deg(f + g) ≥ min{deg f, deg g}.
(4) deg(fg) ≥ deg f + deg g.

Consequently, setting |f | = 2− deg f for all f ∈ R[[X1, X2, . . .]], we have

(1) |f | ∈ {2−n : n ∈ N} ∪ {0} ⊆ Q≥0.
(2) |f | = 0 if and only if f = 0.
(3) |f + g| ≤ max{|f |, |g|}.
(4) |fg| ≤ |f ||g|.

Thus, | · | is a non-archimedean norm on the ring R[[X1, X2, . . .]] and so induces
a ring topology. Moreover, the subring R[X1, X2, . . .] is dense in R[[X1, X2, . . .]],
since

f = lim
r→∞

fr
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for all f =
∑

n∈N(ℵ0) fnX
n ∈ R[[X1, X2, . . .]], where

fr =
∑

n∈N(ℵ0)

o(n)≤r

fnX
n ∈ R[X1, X2, . . .]

for all r. In fact, one has deg(f − fr) > r for all r, while deg fr ≤ r if fr 6= 0.
There is also a ring norm defined on the ring R[[X]]H, given by |f | = 2− deg f ,

where deg f = min{n ∈ Z≥0 : fn 6= 0} for f =
∑∞

n=0 fnX
[n]. Moreover, R[[X]]H

is complete with respect to this norm and contains R[X]H as a dense subring
[15, Theorem 1.1].

Theorem 2.2. Let R be a commutative ring with identity. Let I denote the
ideal of R[X1, X2, . . .] generated by

{
XiXj −

(
i+j
i

)
Xi+j | i, j ≥ 1

}
, and let I

denote the closure of I in the normed ring R[[X1, X2, . . .]]. Let θ : R[X1, X2, . . .]
−→ R[X]H denote the unique R-algebra homomorphism acting by θ : Xn 7−→
X [n] for all n. Then θ extends uniquely to a unique continuous R-algebra
homomorphism θ : R[[X1, X2, . . .]] −→ R[[X]]H, and θ and θ induce R-algebra
isomorphisms

R[X]H ∼= R[X1, X2, . . . ]/I

and

R[[X]]H ∼= R[[X1, X2, . . .]]/I.

Proof. One has I ⊆ ker θ, so there is an induced surjective R-algebra homomor-

phism θ̃ : R[X1, X2, . . .]/I −→ R[X]H. By [9, Remark 3.3], θ̃ is an R-algebra
isomorphism. Now, one has degXn = n = degX [n] for all n and therefore, for
all f ∈ R[X1, X2, . . .], one has deg θ(f) ≥ deg f , so |θ(f)| ≤ |f |. Therefore,
since R[[X]]H is complete with respect to its absolute value and R[X1, X2, . . .]
is dense in R[[X1, X2, . . .]], the map θ extends to a unique R-algebra homo-
morphism θ : R[[X1, X2, . . .]] −→ R[[X]]H. Since I ⊆ ker θ and ker θ is closed
in R[[X1, X2, . . .]], one has I ⊆ ker θ. Moreover, if f ∈ ker θ, then for all r
one has deg θ(fr) = deg(θ(f − fr)) > r while deg θ(fr) = deg θ(fr) ≤ r if
θ(fr) 6= 0, so θ(fr) = 0 for all r, whence f = limr→∞ fr ∈ I. Therefore
ker θ = I. (Alternatively, note that, since every polynomial in R[X1, X2, . . .]
is congruent modulo I to a unique linear polynomial, it is easy to see that
every element of R[[X1, X2, . . .]] is congruent modulo I to a unique linear series
c0 +

∑∞
n=1 ciXi.) �

Corollary 2.3. Let R be a commutative ring with identity. There is a natural
R-algebra isomorphism R[X]H ∼= Z[X]H ⊗Z R.

The domain Z[X]H is not a UFD [30, Example 20] nor even a Krull domain
[30, Example 23].
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3. Closedness

The notions of the following closure properties come originally from K-
theory. In this section we study the transfer of these properties between the
Hurwitz series ring (resp., Hurwitz polynomial ring) and its base ring. To do
so, we begin with the following related definitions.

Let R ⊆ T be an extension of commutative rings with (the same) identity.
Consider the following conditions:

(a) T is integral over R.
(b) Spec(T ) −→ Spec(R) is a bijection.
(c) The residue field extensions are isomorphisms, i.e., for eachQ∈ Spec(T )

the extension RP /PRP ↪→ TQ/QRQ is an isomorphism, where P =
Q ∩R.

(c′) The residue field extensions are purely inseparable.

We first recall some special extensions satisfying two or three conditions
above including the condition (a).

(1) R. G. Swan called the extension R ⊆ T subintegral if (a), (b) and (c)
are satisfied ([29]).

(2) H. Yanagihara called the extension R ⊆ T weakly subintegral if (a), (b)
and (c′) are satisfied ([33]).

(3) G. Picavet and M. Picavet-L’Hermitte called the extension R ⊆ T
infra-integral if (a) and (c) are satisfied ([26]).

(4) M. Picavet-L’Hermitte called the extension R ⊆ T weakly infra-integral
if (a) and (c′) are satisfied ([28]).

Using these extensions, they defined and characterized the seminormaliza-
tion +

TR (resp., weak normalizarion ∗TR, t-closure t
TR, strong t-closure ◦TR) of R

in T as the largest subintegral (resp., weakly subintegral, infra-integral, weakly
infra-integral) subextension of T over R. They also defined that R is seminor-
mal (resp., weakly normal, t-closed, strongly t-closed) in T if R = +

TR (resp.,
R = ∗TR, R = t

TR, R = ◦TR). An integral domain R is called seminormal (resp.,
weakly normal, t-closed, strongly t-closed) (denoted by cR = R for c = +, ∗, t
or ◦) if it is so in its quotient field.

Lemma 3.1. Let R ⊆ T be an extension of commutative rings. Let J be an
ideal of T , and let I = J ∩R. Then T/J is integral over R/I.

Proof. Clear. �

It follows from [10, Theorem 12.10] that for an extension R ⊆ T of domains
and a torsion-free cancellative monoid S, the integral closure of the semigroup
ring R[S] in T [S] is R′[S], where R′ is the integral closure of R in T .

Proposition 3.2. Let R ⊆ T be an extension of domains. If T is integral over
R, then T [X]H is integral over R[X]H.
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Proof. It follows from the above remark that for a torsion-free cancellative
monoid S, T [S] is integral over R[S].

Let I be the ideal as in Theorem 2.2. Then by Theorem 2.2 and the inclusion
map R[X]H ↪→ T [X]H, we have IT [S] ∩ R[S] = I. Now the assertion follows
from Lemma 3.1. �

Define π : R[[X]]H −→ R by π(
∑∞

i=0 fiX
[i]) = f0 for all

∑∞
i=0 fiX

[i] ∈
R[[X]]H. The restriction of π to the Hurwitz polynomial ring R[X]H will be
also denoted by π. The following proposition is useful in the study of Hurwitz
polynomial rings and Hurwitz series rings.

Proposition 3.3. Let R be a ring. One has the following.

(1) ([2, Proposition 1.1]) R[X]H (resp., R[[X]]H) is an integral domain if
and only if R is an integral domain with char(R) = 0.

(2) ([2, Proposition 1.2]) Let I be an ideal of R. Then R[[X]]H/π
−1(I) ∼=

R/I and R[X]H/π
−1(I) ∼= R/I.

(3) ([14, Proposition 2.4] and [4, Corollary 1.5]) If R contains Q, then
R[[X]]H ∼= R[[X]] and R[X]H ∼= R[X].

Recall that a ring R is said to be:

(1) seminormal if for any b, c ∈ R such that b3 = c2 there exists r ∈ R
with r2 = b, r3 = c ([29]).

(2) weakly normal if for any b, c ∈ R such that b3 = c2 there exists r ∈ R
with r2 = b, r3 = c and for any b, c, e ∈ R and any non-zero divisor
d ∈ R such that cp = bdp and pc = de for some prime p there exists
r ∈ R with rp = b, pr = e ([33]).

(3) t-closed if for any b, c, a ∈ R such that b3 + abc − c2 = 0 there exists
r ∈ R with r2 − ar = b, r3 − ar2 = c ([27, Définition 1.1]).

(4) strongly t-closed if R is a weakly normal and t-closed ring ([28]).

Then we have the following connection.

Proposition 3.4. Let R be a domain. Then the following statements are
equivalent.

(1) R is a seminormal (resp., weak normal, t-closed, strongly t-closed) do-
main.

(2) +

R
R = R (resp., ∗

R
R = R, t

R
R = R, ◦

R
R = R).

(3) +R = R (resp., ∗R = R, tR = R, ◦R = R).

Proof. The weak normality follows from [31, Corollary 3.16], while the rest
follow from [25, Proposition 1.6]. Also see [31] for the seminormality and [27,
Theorem 2.3] for the t-closedness. �

Denote by qf(R) the quotient field of a domain R.

Theorem 3.5. Let R be a domain of characteristic zero.

(1) R[[X]]H is a seminormal domain if and only if R is a seminormal do-
main and R contains Q.
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(2) R[[X]]H is a weakly normal domain if and only if R is a weakly normal
domain and R contains Q.

(3) Let R be a Noetherian domain such that the integral closure of R is
also Noetherian (for example, a Noetherian domain with finite integral
closure). Then R[[X]]H is a t-closed domain if and only if R is a t-closed
domain and R contains Q.

(4) Let R be a Noetherian domain such that the integral closure of R is
also Noetherian. Then R[[X]]H is a strongly t-closed domain if and only
if R is a strongly t-closed domain and R contains Q.

(5) R[[X]]H is completely integrally closed if and only if R is completely
integrally closed and R contains Q.

Proof. (1) Assume that R is a seminormal domain and R contains Q. Then
R[[X]]H ∼= R[[X]] is a seminormal domain by [6, Theorem]. For the converse,
assume that R[[X]]H is a seminormal domain. Let α ∈ K := qf(R) such that
α2, α3 ∈ R. Then α2, α3 ∈ R[[X]]H. Note that α ∈ K ⊂ qf(R[[X]]H). Then by
hypothesis α ∈ R[[X]]H ∩K = R. Hence R is a seminormal domain. Let p be a
prime number. Note that for any positive integer n, the exponent of the highest
power of p that divides

(
3n

n,n,n

)
(resp.,

(
2n
n,n

)
) is e3(p, n) :=

∑∞
k=1(b 3n

pk c− 3b n
pk c)

(resp., e2(p, n) :=
∑∞

k=1(b 2n
pk c − 2b n

pk c)). Set m := p2 − 1. Then e3(p,m) ≥ 3

and e2(p,m) ≥ 2. Thus we have (X[m]

p )2, (X[m]

p )3 ∈ R[[X]]H. By hypothesis,

X[m]

p ∈ R[[X]]H. Thus p is a unit in R. Therefore R contains Q.

(2) Assume that R is a weakly normal domain and R contains Q. Then
R[[X]]H ∼= R[[X]] is a weakly normal domain by [7, Corollary 4]. For the converse,
assume that R[[X]]H is a weakly normal domain. Recall from [32, Theorem 1]
that for an extension A ⊆ B of domains, A is weakly normal in B if and only if
A is seminormal in B and, whenever b ∈ B satisfies bp, pb ∈ A for some prime
p, then b ∈ A. Then R is a weakly normal domain by the same argument as in
the seminormality case and R contains Q by (1).

(3) Assume that R is a t-closed domain and R contains Q. Then R[[X]]H ∼=
R[[X]] is a t-closed domain by [27, Proposition 2.25]. For the converse, as-
sume that R[[X]]H is a t-closed domain. Then R is a t-closed domain by the
same argument as in the seminormality case. Since every t-closed domain is
seminormal, R contains Q by (1).

(4) This follows from the fact that a strongly t-closed domain is exactly a
t-closed and weakly normal domain.

(5) This can be proved by the same argument as above. �

Let R ⊆ T be an extension of domains. It is known that if R is seminormal
(resp., t-closed) in T , then R[X] is seminormal (resp., t-closed) in T [X] [5,24].
It follows from [16, Corollary 2.6(1)], we have ∗T [X]R[X] = (∗TR)[X]. Thus if R

is weakly normal in T , then R[X] is weakly normal in T [X]. Finally the strong
t-closedness follows from the fact that R is strongly t-closed in T if and only
if R is both t-closed and weakly normal in T . Also it is well known that R[X]
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is integrally closed (resp., completely integrally closed) if and only if so is R.
Therefore, (+TR)[X] (resp., (∗TR)[X], (tTR)[X], (◦TR)[X]) is seminormal (resp.,
weakly normal, t-closed, strongly t-closed) in T [X]. Since R[X] ⊆ (cTR)[X] for
c := +, ∗, t or ◦, we have c

T [X]R[X] ⊆ (cTR)[X] by well-known facts that the

seminormalization (resp., weak normalization, t-closure, strong t-closure) of an
integral domain R in a given extension domain T is the smallest ring S such
that A ⊆ S ⊆ B and S is seminormal (resp., weakly normal, t-closed, strongly
t-closed) in T ([25, Proposition 1.6(2)] and [7, Lemma 1(iv)]).

Corollary 3.6. Let R be a domain of characteristic zero. Then R[X]H is a
seminormal (resp., weakly normal, t-closed, strongly t-closed, integrally closed,
completely integrally closed) domain if and only if R is a seminormal (resp.,
weakly normal, t-closed, strongly t-closed, integrally closed, completely inte-
grally closed) domain and R contains Q.

Proof. For simplicity, the letter c denotes +, ∗, t or ◦. First we will show that
cR[X] ⊆ (cR)[X]. Then if R is a c-closed domain, then R[X] is a c-closed
domain.

Let K := qf(R). Since K[X] is integrally closed, we have R[X] ⊆ K[X]. By
[25, Proposition 1.6(3)] and [7, Lemma 1(ii)],

cR[X] = c
R[X]

R[X] ⊆ c
K[X]R[X].

Thus, the assertion follows by taking T = K in the above remarks.
The rest can be proved by the same arguments as in Theorem 3.5. �

Example 3.7. Neither Z[[X]]H nor Z[X]H is a seminormal domain. Thus nei-
ther Z[[X]]H nor Z[X]H is integrally closed.

4. Noetherian-like rings

Let R be a commutative ring with identity. An ideal Q of R is primary if
each zero divisor of the ring R/Q is nilpotent, and Q is strongly primary if Q
is primary and contains a power of its radical.

For any ideal I of R, Min(I) is the set of prime ideals of R which are minimal
over I. Set S(I) = R \

⋃
{P | P ∈ Min(I)}. Then I is said to have finite ideal-

length if the ring RS(I)/IRS(I) is an Artinian ring.
First recall some finiteness properties weaker than Noetherian rings.

(1) R is said to be Laskerian if each ideal of R is a finite intersection of
primary ideals.

(2) R is said to be strongly Laskerian if each ideal ofR is a finite intersection
of strongly primary ideals.

(3) R is called a ZD-ring if the set of zero divisors on the R-module R/A
is a finite union of prime ideals for each ideal A of R.

(4) R has Noetherian spectrum if it satisfies the ascending conditions on
radical ideals of R.
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(5) R is said to be piecewise Noetherian if it has Noetherian spectrum and
it satisfies the ACC on P -primary ideals for each prime ideal P of R
[1].

(6) R is said to have finite ideal-length if each ideal of R has finite ideal-
length [1].

(7) R is said to satisfy (accr) if the ascending chain (J :R B) ⊆ (J :R
B2) ⊆ (J :R B3) ⊆ · · · of ideals stabilizes for all ideals J and B of R
with B finitely generated [21].

It is well known that:

Noetherian +3

#+

s. Laskerian +3 Laskerian +3

�� $,

ZD +3 CIFR

FIL p. Noetherian +3ks Noetherian spectrum (accr)

An ideal A in a ring R is said to be an RFG-ideal if the radical of A is the
radical of a finitely generated ideal:

√
A =

√
(a1, . . . , an). Clearly we may then

select the elements ai to belong to A. It is also known that if R has Noetherian
spectrum, then R[X] does also [23, Theorem 2.5].

Lemma 4.1. If R is a domain in which at least one prime number is not a
unit, then R[X]H does not have Noetherian spectrum.

Proof. This follows from two facts that a commutative ring R has Noetherian
spectrum if and only if every prime ideal of R is an RFG-ideal [23, Corollary
2.4], and that the ideal π−1(0) = (X [1], X [2], . . . ) is a prime ideal (Proposition
3.3(2)), but not a finitely generated ideal of R[X]H [4, Corollary 7.5]. �

Corollary 4.2. If a domain R has a prime characteristic, then R[X]H does
not have Noetherian spectrum.

Theorem 4.3. Let R be a domain. Then R[X]H has Noetherian spectrum if
and only if R has Noetherian spectrum and Q ⊆ R.

Proof. (⇐) By [4, Corollary 1.5], R[X]H is isomorphic to R[X], which has
Noetherian spectrum.

(⇒) Note that R ∼= R[X]H/π
−1(0). Then R has Noetherian spectrum. Now

we show that Q ⊆ R. Since R[X]H has Noetherian spectrum, by Lemma 4.1
all the prime numbers are units in R. So all the nonzero integers are also units
in R. Therefore Q ⊆ R. �

Recall from [1, Proposition 2.2] that every maximal ideal of a piecewise
Noetherian ring is finitely generated.

Lemma 4.4. If R is a domain in which at least one prime number is not a
unit, then R[X]H is not piecewise Noetherian.

Proof. This follows from Lemma 4.1 and the fact that every piecewise Noe-
therian ring has Noetherian spectrum. �
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Alternatively we can prove Lemma 4.4 as follows. Let M be a maximal ideal
of R. Then by Proposition 3.3(2), the ideal π−1(M) = M+(X [1], X [2], . . . ) is a
maximal ideal ofR[X]H. Also by [4, Corollary 7.5], the idealM+(X [1], X [2], . . . )
is not a finitely generated ideal of R[X]H. Thus it follows from [1, Proposition
2.2] that R[X]H is not piecewise Noetherian.

Corollary 4.5. If a domain R has a prime characteristic, then R[X]H is not
piecewise Noetherian.

Theorem 4.6. Let R be a domain. Then R[X]H is piecewise Noetherian if
and only if R is piecewise Noetherian and Q ⊆ R.

Proof. (⇐) By [4, Corollary 1.5], R[X]H is isomorphic to R[X], which is piece-
wise Noetherian.

(⇒) Note that R ∼= R[X]H/π
−1(0). Then R is piecewise Noetherian. Now

we show that Q ⊆ R. Since R[X]H is piecewise Noetherian, by Lemma 4.4 all
the prime numbers are units in R. So all the nonzero integers are also units in
R. Therefore Q ⊆ R. �

It is known that the power series ring R[[X]] in one variable over R is Laske-
rian if and only if R is Noetherian ([11, Theorem 1]). It is also shown in
[21, Theorem 2] that R[X] (resp., R[[X]]) satisfies (accr) if and only if R is Noe-
therian. In [3, Corollary 6.5], A. Benhissi gives an example of a commutative
ring (not a domain) R of zero characteristic satisfying (accr), but R[X]H and
R[[X]]H do not.

Lemma 4.7. If R is a Z-torsion-free commutative ring with identity in which
at least one prime number is not a unit, then the rings R[X]H and R[[X]]H do
not satisfy (accr).

Proof. For simplicity, set T := R[X]H or T := R[[X]]H. Let p be a prime number
which is not a unit in R. Now consider the following ascending sequence, where
X = X [1]:

((X) :T p2) ⊆ ((X) :T p3) ⊆ ((X) :T p4) ⊆ · · · .
We claim that this sequence is strictly ascending. Note first that, sinceXX [n] =
(1 + n)X [n+1] for all n, an element f =

∑∞
n=0 fnX

[n] of T lies in (X) if and

only if f0 = 0 and fn is divisible by n in R for all n. It follows that X [pn] ∈
((X) :T pn)− ((X) :T pn−1) for all n, since if pn−1X [pn] ∈ (X), then pn divides
pn−1 in R, whence p divides 1 in R, which is a contradiction. Therefore the
given sequence is strictly ascending, so T does not satisfy (accr). �

Theorem 4.8. Let R be a Z-torsion-free commutative ring with identity. Then
the ring R[X]H (resp., R[[X]]H) satisfies (accr) if and only if R is Noetherian
and Q ⊆ R.

Proof. Suppose that R is Noetherian and Q ⊆ R. By [4, Corollary 7.7], the
rings R[X]H and R[[X]]H are Noetherian and so satisfy (accr). Conversely,
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assume to the contrary that R[[X]]H satisfies (accr) and R is not Noetherian.
Let I0 ( I1 ( I2 ( · · · be a strictly ascending chain of ideals of R. Set

J :=

{ ∞∑
i=0

aiX
[i] | ai ∈ Ii for all i ∈ N

}
.

Then we obtain the following strictly ascending chain of ideals of R[[X]]H:

(J : X) ( (J : X [2]) ( (J : X [3]) ( · · · .
Indeed, if a ∈ Ii+1 \ Ii, then aX [i+1] ∈ J but aX [i] 6∈ J . Thus a ∈ (J : X [i+1])
but a 6∈ (J : X [i]). Therefore (J : X [i]) ( (J : X [i+1]) for all i. It then follows
from Lemma 4.7 that Q ⊆ R. Similarly, if R is not Noetherian, then R[X]H
does not satisfy (accr), so, again, Q ⊆ R. �

An ideal I of a ring R is called pseudo-irreducible if for all ideals A and B
of R, I = AB and A + B = R implies that A = R or B = R. A comaximal
factorization of a proper ideal I of R is a product I =

∏n
i=1 Ii of proper ideals

with Ii + Ij = R for i 6= j. A comaximal factorization is complete if its factors
are pseudo-irreducible. A ring R is called a comaximal ideal factorization ring
(CIFR) whenever every proper ideal of R has a complete comaximal factoriza-
tion. It is shown in [12, Proposition 3.5] that every ZD-ring is a CIFR. Denote
by J(R) the Jacobson radical of a ring R.

Lemma 4.9 ([12, Lemma 4.1]). Let R be a ring. Then the following statements
are equivalent.

(1) R is a CIFR.
(2) R/J(R) is a CIFR.
(3) Every homomorphic image of R is a CIFR.
(4) R/I is a CIFR for some ideal I ⊆ J(R).

Theorem 4.10. Let R be a ring. Then R is a CIFR if and only if R[[X]]H is
a CIFR.

Proof. First note that for a strictly ordered monoid (S,≤) such that for all
s ≥ 0 and f ∈ [[RS,≤]], f ∈ J([[RS,≤]]) if and only if f(0) ∈ J(R) [19, Corollary
2.2]. Thus we have an isomorphism: [[RS,≤]]/J([[RS,≤]]) ∼= R/J(R). Now the
assertion follows from Theorem 2.2 and Lemma 4.9. �

Let P be a property of a class of commutative rings which is stable under the
ring of generalized power series (resp., the semigroup ring) and homomorphic
image. Then by Theorem 2.2, a ring R satisfies P if and only if R[[X]]H (resp.,
R[X]H) satisfies P, as the following showcase result shows.

In [22], W. K. Nicholson introduced the notion of a clean ring. He defined a
ring R to be clean if every element of R can be written as a sum of a unit and
an idempotent.

Theorem 4.11. Let R be a commutative ring with identity. Then R is a clean
ring if and only if R[[X]]H is a clean ring.
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Proof. Assume that R is a clean ring. Then by Theorem 2.2, the assertion
follows from the facts that (1) for a strictly ordered monoid (S,≤) such that
s ≥ 0 for all s ∈ S, [[RS,≤]] is a clean ring if and only if R is a clean ring
[20, Theorem 5.3] and (2) every homomorphic image of a clean ring is clean.
The converse follows from the isomorphism R ∼= R[[X]]H/π

−1(0) (Proposition
3.3(2)). �

It is also known that R[X] is a ZD-ring if and only if R is Noetherian
[13, Theorem].

Question. When is R[X]H a ZD-ring (resp., a ring with finite ideal-length)?
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