• 제목/요약/키워드: semiconductor materials quality

검색결과 147건 처리시간 0.027초

미스트화학기상증착 시스템의 Hot Zone 내 사파이어 기판 위치에 따른 β-Ga2O3 이종 박막 성장 거동 연구 (Growth Behavior of Heteroepitaxial β-Ga2O3 Thin Films According to the Sapphire Substrate Position in the Hot Zone of the Mist Chemical Vapor Deposition System)

  • 김경호;이희수;신윤지;정성민;배시영
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.500-504
    • /
    • 2023
  • In this study, the heteroepitaxial thin film growth of β-Ga2O3 was studied according to the position of the susceptor in mist-CVD. The position of the susceptor and substrate was moved step by step from the center of the hot zone to the inlet of mist in the range of 0~50 mm. It was confirmed that the average thickness increased to 292 nm (D1), 521 nm (D2), and 580 nm (D3) as the position of the susceptor moved away from the center of the hot zone region. The thickness of the lower region of the substrate is increased compared to the upper region. The surface roughness of the lower region of the substrate also increased because the nucleation density increased due to the increase in the lifetime of the mist droplets and the increased mist density. Therefore, thin film growth of β-Ga2O3 in mist-CVD is performed by appropriately adjusting the position of the susceptor (or substrate) in consideration of the mist velocity, evaporation amount, and temperature difference with the substrate, thereby determining the crystallinity of the thin film, the thickness distribution, and the thickness of the thin film. Therefore, these results can provide insights for optimizing the mist-CVD process and producing high-quality β-Ga2O3 thin films for various optical and electronic applications.

칼코겐화물과 산화물 이종구조의 각도분해능 광전자분광 연구 (Angle-resolved photoemission spectrscopy for chalcogenide and oxide heterostructures)

  • 장영준
    • 진공이야기
    • /
    • 제5권2호
    • /
    • pp.10-17
    • /
    • 2018
  • Chalcogenide and oxide heterostructures have been studied as a next-generation electronic materials, due to their interesting electronic properties, such as direct bandgap semiconductor, ferroelectricity, ferromagnetism, superconductivity, charge-density waves, and metal-insulator transition, and their modification near heterointerfaces, so called, electronic reconstruction. An angle-resolved photoemission spectroscopy (ARPES) is a powerful technique to unveil such novel electronic phases in detail, especially combined with high quality thin film preparation methods, such as, molecular beam epitaxy and pulsed laser deposition. In this article, the recent ARPES results in chalcogenide and oxide thin films will be introduced.

화합물 반도체 재료의 결정성장과 특성평가 (Crystal Growth and Characterization of Compound Semiconductor Materials)

  • 민석기
    • 한국결정학회지
    • /
    • 제1권2호
    • /
    • pp.115-125
    • /
    • 1990
  • We have investigated bulk and hetero-epitaxial growth of GaAs single crystal. Various growth techniques such as HB, HZM, and VGF for high quality bulk GaAs were successfully developed by appling the specially designed DM(direct monitoring) furnace. Al GaAs/GaAs superlattice structure and In(x)Ga(1-x) As/GaAs epilayers were also grown by MOCVD and VPE, respectively. The characterization of GaAs single crystals and epilayers was made by X-ray diffraction, Hall effect, PL, chemical etching and angle lapping technique.

  • PDF

SiC 복합체 제조를 위한 화학기상침착공정에 대한 수치해석 연구 (Numerical Study on CVI Process for SiC-Matrix Composite Formation)

  • 배성우;임동원;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.61-65
    • /
    • 2015
  • SiC composite materials are usually used to very high temperature condition such as thermal protection system materials at space vehicles, combustion chambers or engine nozzles because they have high specific strength and good thermal properties at high temperature. One of the most widely used fabrication methods of SiC composites is the chemical vapor infiltration (CVI) process. During the process, chemical gases including Si are introduced into porous preform which is made by carbon fibers for infiltration. Since the processes take a very long time, it is important to reduce the process time in designing the reactors and processes. In this study, both the gas flow and heat transfer in the reactors during the processes are analyzed using a computational fluid dynamics method in order to design reactors and processes for uniform, high quality SiC composites. Effects of flow rate and heater temperature as process parameters to the infiltration process were examined.

Atomic Layer Deposition for Display Applications

  • Park, Jin-Seong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.76.1-76.1
    • /
    • 2013
  • Atomic Layer Deposition (ALD) has remarkably developed in semiconductor and nano-structure applications since early 1990. Now, the advantages of ALD process are well-known as controlling atomic-level-thickness, manipulating atomic-level-composition control, and depositing impurity-free films uniformly. These unique properties may accelerate ALD related industries and applications in various functional thin film markets. On the other hand, one of big markets, Display industry, just starts to look at the potential to adopt ALD functional films in emerging display applications, such as transparent and flexible displays. Unlike conventional ALD process strategies (good quality films and stable precursors at high deposition processes), recently major display industries have suggested the following requirements: large area equipment, reasonable throughput, low temperature process, and cost-effective functional precursors. In this talk, it will be mentioned some demands of display industries for applying ALD processes and/or functional films, in terms of emerging display technologies. In fact, the AMOLED (active matrix organic light emitting diode) Television markets are just starting at early 2013. There are a few possibilities and needs to be developing for AMOLED, Flexible and transparent Display markets. Moreover, some basic results will be shown to specify ALD display applications, including transparent conduction oxide, oxide semiconductor, passivation and barrier films.

  • PDF

Aerosol Deposition Nozzle Design for Uniform Flow Rate: Divergence Angle and Nozzle Length

  • Kim, Jae Young;Kim, Young Jin;Jeon, Jeong Eun;Jeon, Jun Woo;Choi, Beom Soo;Choi, Jeong Won;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.38-44
    • /
    • 2022
  • Plasma density in semiconductor fabrication equipment becomes higher to achieve the improved the throughput of the process, but the increase of surface corrosion of the ceramic coated chamber wall has been observed by the increased plasma density. Plasma chamber wall coating with aerosol deposition prefer to be firm and uniform to prevent the potential creation of particle inside the chamber from the deformation of the coating materials, and the aerosol discharge nozzle is a good control factor for the deposited coating condition. In this paper, we investigated the design of the nozzle of the aerosol deposition to form a high-quality coating film. Computational fluid dynamics (CFD) study was employed to minimize boundary layer effect and shock wave. The degree of expansion, and design of simulation approach was applied to found out the relationship between the divergence angle and nozzle length as the key parameter for the nozzle design. We found that the trade-off tendency between divergence angle and nozzle length through simulation and quantitative analysis, and present the direction of nozzle design that can improve the uniformity of chamber wall coating.

SRAF를 적용한 극자외선 노광기술용 위상 변위 마스크의 반사도에 따른 이미징 특성 연구 (Evaluation of Imaging Performance of Phase Shift Mask Depending on Reflectivity with Sub-resolution Assist Feature in EUV Lithography)

  • 장용주;김정식;홍성철;조한구;안진호
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.1-5
    • /
    • 2015
  • In photolithography process, resolution enhancement techniques such as optical proximity correction (OPC) and phase shift mask (PSM) have been applied to improve resolution. Especially, sub-resolution assist feature (SRAF) is one of the most important OPC to enhance image quality including depth of focus (DOF). However, imaging performance of the mask could be varied with the diffraction order amplitude changed by inserting SRAF. Therefore, in this study, we investigated the imaging properties and process margin of attenuated PSM with SRAF. Reflectivities of attenuated PSMs at 13.5 nm were 3, 6, 9% and simulation was performed by $PROLITH^{TM}$. As a result, aerial image properties and DOF as well as diffraction efficiency were improved by increasing the reflectivity of attenuated PSM. Additionally, printed critical dimension variations depending on SRAF width and space error were also reduced for attenuated PSM with high reflectivity. However, SRAF could be printed when reflectivity of attenuated PSM is high enough. In conclusion, optimization of reflectivity of attenuated PSM and SRAF to prevent side-lobe from being printed is needed to be considered.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • 장호원;문희규;김도홍;심영석;윤석진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Synthesis and Characterization of New Nickel Sulfide Precursor

  • Lee, Sang Chan;Park, Bo Keun;Chung, Taek-Mo;Hong, Chang Seop;Kim, Chang Gyoun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.365.2-365.2
    • /
    • 2014
  • Nickel sulfide (NiS) has been utilized in optoelectronic applications, such as transformation-toughening agent for materials used in semiconductor applications, catalysts, and cathodic materials in rechargeable lithium batteries. Recently, high quality nickel sulfide thin films have been explored using ALD/CVD technique. Suitable precursors are needed to deposit thin films of inorganic materials. However, nickel sulfide precursors available for ALD/CVD process are very limited to nickel complexes with dithiocarbamate and alkanethiolate ligands. Therefore, it is essential to prepare novel nickel sulfide suitable for ALD/CVD precesses. Herein we report on the synthesis and characterization of new nickel sulfide complex with designed aminothiolate ligand. Furthermore thin films of NiS have been prepared on silicon oxide substrates by spin coating nickel precursor 10 wt% in THF. The novel complex has been characterized by means of 1H-NMR, elemental analysis, thermogravimetric analysis (TGA), X-ray Diffraction (XRD) and scanning electron microscope (SEM).

  • PDF

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices

  • Han, Chang-Yeol;Yang, Heesun
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.449-469
    • /
    • 2017
  • The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.