• Title/Summary/Keyword: semi-rigid analysis

Search Result 193, Processing Time 0.023 seconds

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Inelastic Analyses and Simplified Equations for Improved T-stub Element Used at Semi-Rigid Connections (반강접 접합부의 요소인 개량 T-stub의 비탄성 해석과 약산식)

  • Cho, Jae Chul;Kim, Won Ki;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.271-279
    • /
    • 1999
  • Recently, studies on semi-rigid beam-to-column connections have been done to develop a T-stub element with separators between column face and T-stub flange. In this paper, inelastic analyses for the improved T-stub element are performed, and their results are compared with existing experimental results. The inelastic analyses using gap elements between column face and the separator, and initial stresses at the high-tension bolts result in good agreement with experimental results. Simplified design methods estimating the initial stiffness and the strength of the semi-rigid connection for compression force are proposed.

  • PDF

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.

Nonlinear Analysis of Steel Frames Using Visual Basic (Visual Basic을 이용한 강뼈대 구조물의 비선형 해석)

  • 윤영조;김선희;이종석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.403-410
    • /
    • 1999
  • General1y, H-section is used for columns and beams in the middle and low steel building, But it has a strong and weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square holler section(S.H.S) is used for columns because it is able to coiler the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted Kishi-Chen power Model about the behavior of connection between H-beam and S.H.S column. Non-linear analysis program was considered the non-linearity of semi-rigid connection and the geometrical non-linearity under the effect of axial force. It was programed by FORTRAN90 and Visual Basic.

  • PDF

Research on bearing characteristics of socket-spigot template supporting system

  • Guo, Yan;Hu, Chang-Ming;Lian, Ming
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.869-887
    • /
    • 2016
  • The socket-spigot template supporting system is widely used in engineering applications in China. As a newer type of support structure, there has been growing research interest in its bearing capacity. In this paper, four vertical bearing capacity tests were carried out on the basic mechanical unit frame of a socket-spigot template supporting system. The first goal was to explore the influence of the node semi-rigid degree and the longitudinal spacing of the upright tube on the vertical bearing capacity. The second objective was to analyze the displacement trend and the failure mode during the loading process. This paper presents numerical analysis of the vertical bearing capacity of the unit frames using the finite element software ANSYS. It revealed the relationship between the node semi-rigid degree and the vertical bearing capacity, that the two-linear reinforcement model of elastic-plastic material can be used to analyze the socket-spigot template supporting system, and, through node entity model analysis, that the load transfer direction greatly influences the node bearing area. Finally, this paper indicates the results of on-site application performance experiments, shows that the supporting system has adequate bearing capacity and stability, and comments on the common work performance of a socket and fastener scaffold.

Buckling Analysis for Single Layer Latticed Domes considering the Change of Joint Rigidity (접합부 강성변화를 고려한 단층 래티스 돔의 좌굴해석)

  • 이후진;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.337-344
    • /
    • 2001
  • This paper is concerned with the change of joint rigidity in estimating the degree of semi-rigidity of connections and the buckling load in a single layer latticed dome. The estimations are based on information about the ratio for the rotational stiffness of the connection to the flexural stiffness of the member and the minimum eigenvalue of a structure for pinned, semi-rigid and completely rigid cases, respectively. Connection characteristics are reflected in the ratio control of joint rigidity for the DOFs to be related using the spring element by FEM.

  • PDF

Analysis of Semi-Rigid Connections on 3D Floating Structures (3차원 플로팅 구조물의 반강접 접합부 해석)

  • Park, Jong-Seo;Song, Hwa-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • The shape of floating superstructure is the same as other buildings, but the foundation is based not on land but on a floating body. Unlike inland structures, they are largely influenced by the wave load. Deformation of the floating pontoon due to the wave loads affects the connection, which in turn causes problems related to the habitability and safety to the superstructure users. Accordingly, this study conducted elastic analysis regarding rigid connection and semi-rigid connection by the integration analysis that combined together the superstructure and pontoon of the 3-D floating structure. Moreover, this study investigated the results of the separation analysis excluding pontoon and the integration analysis. In addition, elasticity analysis was used to divide up the wave loads cases, and to classify the moment and displacement of the structure depending on connection following the changes in the wave loads.