• Title/Summary/Keyword: semi-rigid analysis

Search Result 193, Processing Time 0.025 seconds

Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture (골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용)

  • Chung, Woo-Yang;Eckelman, Carl A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF

Development of the Nonlinear Structural Analysis Model for the Light-Weight Framed Structures (II) (경량형강 시설물의 비선형 구조해석 모델개발(II) -반강결 뼈대구조물의 해석에 대하여-)

  • 김한중;이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.78-87
    • /
    • 1998
  • In this study, semi-rigid light-weight framed structures analysis model (SERIFS) was developed by advancing the LEIFS model. This model enables us to analyze simultaneous effects of large deflection and semi-rigid connection by computing unbalanced load occurring in the process of repeated loading through equalization of bending moments and torsion. This model is also able to handle the effect of the semi-rigid connection and large deflection by modifying the elastic stiffness matrix using moment-rotation behavior of connection. Moment-rotation behavior of the semi-rigid connection was adopted from the experimental results of load-vertical displacement of frame element In conclusion, this model achieves to analyze the nonlinear and large deflection behavior on the semi-rigid and light-weight steel frame connection.

  • PDF

Inelastic Buckling Analysis of Semi-rigid Frames with Shear Deformations by Haringx's Theories (Haringx의 전단변형 이론을 고려한 부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.64-71
    • /
    • 2014
  • The generalized tangential stiffness matrix of semi-rigid frame element with shear deformations based on Haringx's shear theory is newly derived and compared with the previous study based on Engesser's shear theory. Also, linearized elastic and geometric stiffness matrices are newly presented from the exact tangential stiffness matrix. In oder to obtain the inelastic system buckling load of shear flexible semi-rigid frame structure, the Ef method by tangential modulus theory is adopted and the FE analysis programs are developed. Finally, the shear and semi-rigid effects of system bucking are investigated by two numerical examples.

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

Wooden framed structures with semi-rigid connections: Quantitative approach focused on design needs

  • Santana, C.L.O.;Mascia, N.T.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.315-331
    • /
    • 2009
  • Mechanical connections are recognized as extremely important elements in the aspect of strength and structural safety. However, classical structural model does not consider the connection stiffness properties, and are based on models with pinned or rigid joints only. In fact, mechanical connections are deformable and behave not linearly, affecting the whole structure and inducing nonlinear behavior as well. The quantification of this effect, however, depends on the description of the working of the connectors and the wood response under embedment. The theoretical modeling of wood structures with semi-rigid connections involves not only the structural analysis, but also the modeling of both single and grouped moment resisting connectors and the study of the wood properties under embedment. The proposal of this paper is to approach these aspects, and to quantitatively study the influence of the moment resistant connection in wooden framed structures. Comparisons between rigid and semi-rigid connections and between linear and nonlinear analysis lead to quantitative results.

A Study on the Behavior of Frame with Connections between H-Beams and S . H . S Columns considering Joint Flexibility (H형강보.각형강관기둥 접합부의 연성도를 고려한 골조의 거동에 관한 연구)

  • 강석봉;김이두;박순규;김재훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.211-218
    • /
    • 1997
  • Analysis of structures are usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. But in general all structures is connected under the semi-rigid connections. Semi-rigid connect ions have demerits that is simplification work on connection's behavior, moment-rotation relationships of connect ions , apprehension of nonlinear analysis etc. On the other hand there is merits that is improvements of serviceability, economic efficiency, construction in predicting real behavior frames. This study is to make model of connect ions by based on experimental study and after analysis on frames considering characteristics of semi-rigid connections. semi-rigid connection's influence on the behavior of structures and fundamental data on application of structures that is connected between S H S column and H beam is exhibited.

  • PDF

Structural System Reliability Analysis of Semi-rigid Connected Frame - Focused on Plastic Greenhouse - (반강결 프레임 구조물의 시스템 신뢰성 해석 - 비닐하우스를 중심으로 -)

  • Lee, Sangik;Lee, Jonghyuk;Jeong, Youngjoon;Kim, Dongsu;Seo, Byunghun;Seo, Yejin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • Recently, the trend in structural analysis and design is moving towards the development of reliable system. The reliability-based method defines various limit states related to usability and failure, thereby enabling multiple levels of design according to the importance of a structure. Meanwhile, an actual structure is composed of a set of several elements, and particularly, a frame type is composed of a system in which the members are connected each other. At this time, the actual connection between members is in a semi-rigid condition, not in complete rigid or hinged. This semi-rigid is found in several structures, especially in agricultural facilities designed with lightweight materials. In this study, a system reliability analysis technique for frame structure was established, and applied to an analysis of the semi-rigid connection. Various conditions of correlation were applied to reflect the connectivity between members, and through this, the limitations of existing structural analysis method and the behavioral characteristics of structure were analyzed. The failure probability of the frame member component and the overall structure system was significantly different in consideration of the semi-rigid connection. In addition, it was evaluated that the behavior of structure can be more accurately analyzed if the correlation according to the position of members in a system is further investigated.

Pushover analysis of gabled frames with semi-rigid connections

  • Shooshtari, Ahmad;Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1557-1568
    • /
    • 2015
  • The nonlinear static analysis of structure, which is under the effect of lateral loads and provides the capacity curve of the structure, is defined as a push-over analysis. Ordinarily, by using base shear and the lateral displacement of target point, the capacity curve is obtained. The speed and ease of results interpretation in this method is more than that of the NRHA responses. In this study, the nonlinear static analysis is applied on the semi-rigid steel gabled frames. It should be noted that the members of this structure are analyzed as a prismatic beam-column element in two states of semi-rigid connections and supports. The gabled frame is modeled in the OpenSees software and analyzed based on the displacement control at the target point. The lateral displacement results, calculated in the top level of columns, are reported. Furthermore, responses of the structure are obtained for various support conditions and the rigidity of nodal connections. Ultimately, the effect of semi-rigid connections and supports on the capacity and the performance point of the structure are presented in separated graphs.

Evaluation of responses of semi-rigid frames at target displacements predicted by the nonlinear static analysis

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datt, Tushar K.
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.399-415
    • /
    • 2020
  • Responses of semi-rigid frames having different degrees of semi-rigidity obtained by the nonlinear static analysis (NSA) are evaluated at specific target displacements by comparing them with those obtained by the nonlinear time-history analysis (NTHA) for scaled earthquakes. The peak ground accelerations (PGA) of the earthquakes are scaled such that the obtained peak top story displacements match with the target displacements. Three different types of earthquakes are considered, namely, far-field and near-field earthquakes with directivity and fling-step effects. In order to make the study a comprehensive one, three degrees of semi-rigidity (one fully rigid and the other two semi-rigid), and two frames having different heights are considered. An ensemble of five-time histories of ground motion is included in each type of earthquake. A large number of responses are considered in the study. They include the peak top-story displacement, maximum inter-story drift ratio, peak base shear, total number of plastic hinges, and square root of sum of the squares (SRSS) of the maximum plastic hinge rotations. Results of the study indicate that the nonlinear static analysis provides a fairly good estimate of the peak values of top-story displacements, inter-story drift ratio (for shorter frame), peak base shear and number of plastic hinges; however, the SRSS of maximum plastic hinge rotations in semi-rigid frames are considerably more in the nonlinear static analysis as compared to the nonlinear time history analysis.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.