• Title/Summary/Keyword: semi- simplicity

Search Result 33, Processing Time 0.027 seconds

Design and analysis of non-linear space frames with semi-rigid connections

  • Sagiroglu, Merve;Aydin, Abdulkadir Cuneyt
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1405-1421
    • /
    • 2015
  • Semi-rigid connections are the actual behavior of beam-to-column connections in steel frames. However, the behavior of semi-rigid connections is not taken into account for the simplicity in the conventional analysis and design of steel frames. A computer-based analysis and design has been studied for the three-dimensional steel frames with semi-rigid connections. The nonlinear analysis which includes the effects of the flexibility of connections is used for this study. It is designed according to the buckling and combined stress constraints under the present loading after the joint deformations and the member end forces of the space frame are determined by the stiffness matrix method. The semi-rigid connection type is limited to the top and bottom angles with a double web angle connection. The Frye-Morris polynomial model is used to describe the non-linear behavior of semi-rigid connections. Various design examples are presented to demonstrate the efficiency of the method. The results of design and analysis of unbraced semi-rigid frames are compared to the results of unbraced rigid frames under the same design requirements.

Practical and efficient approaches for semi-rigid design of composite frames

  • Gil, Beatriz;Bayo, Eduardo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.161-184
    • /
    • 2007
  • The use of composite semi-rigid connections is not fully exploited, in spite of its great number of advantages. Composite semi-rigid connections may lead to an optimal moment distribution that will render lighter structures. Furthermore, using the appropriate semi-rigid connection design, the stability of the frames against lateral loads may entirely rely on the joint stiffness, thus avoiding bracing systems and permitting more diaphanous designs. Although modern codes, such as the Eurocode 4 (EC4), propose thorough methods of analysis they do not provide enough insight and simplicity from the design point of view. The purpose of this paper is to introduce practical and efficient methods of analysis that will facilitate the work of a structural analyst starting from the global analysis of the composite frame and ending on the final connection design. A key aspect is the definition of the stiffness and strength of the connections that will lead to an optimal moment distribution in the composite beams. Two examples are presented in order to clarify the application of the proposed methods and to demonstrate the advantages of the semi-rigid composite design with respect to the alternative pinned and rigid ones. The final aim of the paper is to stimulate and encourage the designer on the use of composite semi-rigid structures.

THE JACOBSON RADICAL OF THE ENDOMORPHISM RING, THE JACOBSON RADICAL, AND THE SOCLE OF AN ENDO-FLAT MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.3
    • /
    • pp.453-467
    • /
    • 2000
  • For any S-flat module RM(which will be called endoflat) with a commutaitve ring R with identity, where S is the endomorphism ring RM, the fact that every epimorphism is an automorphism has been proved and the Jacobson Radical Rad(S) of S is described as follow; Rad(S) = { f$\in$S|Imf=Mf is small in M} = {f$\in$S|Imf $\leq$Rad(M)}. Additionally for any quasi-injective endo-flat module RM, the fact that every monomorphism is an automorphism has been proved and the Jacobson Radical Rad(S) for any quasi-injective endo-flat module has been studied too. Also some equivalent conditions for the semi-primitivity of any faithful endo-flat module RM with the open Jacobson Radical Rad(M) and those for the semi-simplicity of any faithful endo-flat quasi-injective module RM with the closed Socle Soc(M) have been studied.

  • PDF

Implementation of Uniform Deformation Theory in semi-active control of structures using fuzzy controller

  • Mohammadi, Reza Karami;Haghighipour, Fariba
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.351-360
    • /
    • 2017
  • Protection of structures against natural hazards such as earthquakes has always been a major concern. Semi-active control combines the reliability of passive control and versatility and adaptability of active control. So it has recently become a preferred control method. This paper proposes an algorithm based on Uniform Deformation Theory to mitigate vulnerable buildings using magneto-rheological (MR) damper. Due to the successful performance of fuzzy logic in control of systems and its simplicity and intrinsically robustness, it is used here to regulate MR dampers. The particle swarm optimization (PSO) algorithm is also used as an adaptive method to develop a fuzzy control algorithm that is able to create uniform inter-story drifts. Results show that the proposed algorithm exhibited a desirable performance in reducing both linear and nonlinear seismic responses of structures. Performance of the presented method is indicated in compare with passive-on and passive-off control algorithms.

Semi-3D Path Planning using Virtual Tangential Vector and Fuzzy Control (Virtual Tangential Vector와 퍼지 제어를 이용한 준 3차원 경로계획)

  • Kwak, Kyung-Woon;Jeong, Hae-Kwan;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • In this paper, a hybrid semi-3D path planning algorithm combining Virtual Tangential Vector(VTV) and fuzzy control is proposed. 3D dynamic environmental factors are reflected to the 2D path planning model, VTV. As a result, the robot can control direction from 2D path planning algorithm VTV and speed as well depending on the fuzzy inputs such as the distance between the robot and obstacle, roughness and slope. Performances and feasibilities of the suggested method are demonstrated by using Matlab simulations. Simulation results show that fuzzy rules and obstacle avoidance methods are working properly toward virtual 3D environments. The proposed hybrid semi-3D path planning is expected to be well applicable to a real life environment, considering its simplicity and realistic nature of the dynamic factors included.

Comparison of semi-active friction control method to reduce transient vibration using SDOF model of truss structure (트러스 구조물의 1 자유도 모형을 이용한 반능동 마찰 제어 방법의 과도 응답 저감 성능 비교)

  • Park, Young-Min;Kim, Kwang-Joon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.59-63
    • /
    • 2011
  • Friction damping is one of the attractive vibration control technique for space structures due to its simplicity and large damping capacity. However, passive approaches for friction damping have a limitation because energy is no longer dissipated at sticking. In order to overcome this problem, semi-active control methods to adjust normal force at frictional interface have been studied in previous researches. In this paper, two semi-active friction control method is compared by simulating SDOF model of truss structure. The first approach is on-off control to maximize rate of energy dissipation, whereas the second concept is variable friction force control to minimize amplitude ratio for each half period. The maximum friction force, control variable in on-off control method, is obtained to minimize 1% settling time, and is different from optimal friction force in passive control. Simulation results show that performance of on-off control is better than that of variable friction force control in terms of settling time and controlled friction force.

  • PDF

On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections

  • Zarfam, Panam;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.383-398
    • /
    • 2009
  • Applying nonlinear statistical analysis methods in estimating the performance of structures in earthquakes is strongly considered these days. This is due to the methods' simplicity, timely lower cost and reliable estimation in seismic responses in comparison with time-history nonlinear dynamic analysis. Among nonlinear methods, simplified to be incorporated in the future guidelines, Modal Pushover Analysis, known by the abbreviated name of MPA, simply models nonlinear behavior of structures; and presents a very proper estimation of nonlinear dynamic analysis using lateral load pattern appropriate to the mass. Mostly, two kinds of connecting joints, 'hinge' and 'rigid', are carried out in different type of steel structures. However, it should be highly considered that nominal hinge joints usually experience some percentages of fixity and nominal rigid connections do not employ totally rigid. Therefore, concerning the importance of these structures and the significant flexibility effect of connections on force distribution and elements deformation, these connections can be considered as semi-rigid with various percentages of fixity. Since it seems, the application and implementation of MPA method has not been studied on moment-resistant steel frames with semi rigid connections, this research focuses on this topic and issue. In this regard several rigid and semi-rigid steel bending frames with different percentages of fixity are selected. The structural design is performed based on weak beam and strong column. Followed by that, the MPA method is used as an approximated method and Nonlinear Response History Analysis (NL-RHA) as the exact one. Studying the performance of semi-rigid frames in height shows that MPA technique offers reasonably reliable results in these frames. The methods accuracy seems to decrease, when the number of stories increases and does decrease in correlation with the semi-rigidity percentages. This generally implies that the method can be used as a proper device in seismic estimation of different types of low and mid-rise buildings with semi-rigid connections.

THE EQUIVALENCE OF TWO ALGEBARAIC K-THEORIES

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1997
  • For a ring R with 1, the higher K-theory of Quillen is defined by the higher homotopy groups of the plus construction of the general linear group of R. On the other hand, the Volodin K-theory is defined by the higher homotopy groups of the Volodin space. In this paper we show that these two K-theories are equivalent. We show that the Volodin space is a homotopy fiber of the acyclic map from BGL(R) to its plus construction.

  • PDF

Synthesis of Cyclic Type Semi-Fluorinated Disodium Alkanesulfonate

  • Chirumarry, Sridhar;Ko, Yohan;Jang, Kiwan;Shin, Dong-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.257-260
    • /
    • 2016
  • A new perfluorobutyl substituted cyclic type disodium alkanesulfonate is designed, synthesized and characterized as alternative substance to perfluorooctane sulfonic acid (PFOS, 1), a well-known surfactant. Cylic type sulfonate was accomplished from commercially available 2,2,3,3,4,4,5,5-octafluoro-1,6-hexanediol in four steps. Bio-degradable perfluorobutyl moiety was introduced from fluorous diol, which is symmetrically substituted amphiphile via installation of an intermediate trifluoromethanesulfonyl ester and easily manipulated by double displacement of triflate using potassium malonate and further reduction followed by nucleophilic ring opening are key reactions to get target disodium alkanesulfonate. The efficiency and simplicity in the synthesis of this material offer a new strategy to design PFOS alternatives.