• 제목/요약/키워드: semantic weight

Search Result 71, Processing Time 0.023 seconds

A Study on Building Structures and Processes for Intelligent Web Document Classification (지능적인 웹문서 분류를 위한 구조 및 프로세스 설계 연구)

  • Jang, Young-Cheol
    • Journal of Digital Convergence
    • /
    • v.6 no.4
    • /
    • pp.177-183
    • /
    • 2008
  • This paper aims to offer a solution based on intelligent document classification to create a user-centric information retrieval system allowing user-centric linguistic expression. So, structures expressing user intention and fine document classifying process using EBL, similarity, knowledge base, user intention, are proposed. To overcome the problem requiring huge and exact semantic information, a hybrid process is designed integrating keyword, thesaurus, probability and user intention information. User intention tree hierarchy is build and a method of extracting group intention between key words and user intentions is proposed. These structures and processes are implemented in HDCI(Hybrid Document Classification with Intention) system. HDCI consists of analyzing user intention and classifying web documents stages. Classifying stage is composed of knowledge base process, similarity process and hybrid coordinating process. With the help of user intention related structures and hybrid coordinating process, HDCI can efficiently categorize web documents in according to user's complex linguistic expression with small priori information.

  • PDF

Ontology-based Semantic Matchmaking for Service-oriented Mission Operation (서비스 지향 임무 수행을 위한 온톨로지 기반 시맨틱 매칭 방법)

  • Song, Seheon;Lee, SangIl;Park, JaeHyun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.238-245
    • /
    • 2016
  • There are technological, operational and environmental constraints at tactical edge, which are disconnected operation, intermittent connectivity, and limited bandwidth (DIL), size, weight and power (SWaP) limitations, ad-hoc and mobile network, and so on. To overcome these limitations and constraints, we use service-oriented architecture (SOA) based technologies. Moreover, the operation environment is highly dynamic: requirements change in response to the emerging situation, and the availability of resources needs to be updated constantly due to the factors such as technical failures. In order to use appropriate resources at the right time according to the mission, it needs to find the best resources. In this context, we identify ontology-based mission service model including mission, task, service, and resource, and develop capability-based matching in tactical edge environment. The goal of this paper is to propose a capability-based semantic matching for dynamic resource allocation. The contributions of this paper are i) military domain ontologies ii) semantic matching using ontology relationship; and (iii) the capability-based matching for the mission service model.

Sound quality characteristics of heavy-weight impact sounds generated by impact ball (임팩트 볼에 의한 중량 충격음의 Sound Quality 특성)

  • You, Jin;Lee, Hye-Mi;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.671-674
    • /
    • 2006
  • Heavy-weight impact sounds generated by impact ball were classified according to the frequency characteristics on the equal loudness contours. Sound quality metrics such as Zwicker's loudness, sharpness, roughness of each classified impact sound were also measured. Loudness spectrum has been regarded as an indication of the characteristics difference of each classified impact sound. The adjectives in Korean expressing the sound quality characteristics of floor impact sounds were also investigated by adoptability and similarity tests. The group of the adjectives was used to evaluate the sound quality of floor impact sound by semantic differential test method.

  • PDF

Semantic Visualization of Dynamic Topic Modeling (다이내믹 토픽 모델링의 의미적 시각화 방법론)

  • Yeon, Jinwook;Boo, Hyunkyung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.131-154
    • /
    • 2022
  • Recently, researches on unstructured data analysis have been actively conducted with the development of information and communication technology. In particular, topic modeling is a representative technique for discovering core topics from massive text data. In the early stages of topic modeling, most studies focused only on topic discovery. As the topic modeling field matured, studies on the change of the topic according to the change of time began to be carried out. Accordingly, interest in dynamic topic modeling that handle changes in keywords constituting the topic is also increasing. Dynamic topic modeling identifies major topics from the data of the initial period and manages the change and flow of topics in a way that utilizes topic information of the previous period to derive further topics in subsequent periods. However, it is very difficult to understand and interpret the results of dynamic topic modeling. The results of traditional dynamic topic modeling simply reveal changes in keywords and their rankings. However, this information is insufficient to represent how the meaning of the topic has changed. Therefore, in this study, we propose a method to visualize topics by period by reflecting the meaning of keywords in each topic. In addition, we propose a method that can intuitively interpret changes in topics and relationships between or among topics. The detailed method of visualizing topics by period is as follows. In the first step, dynamic topic modeling is implemented to derive the top keywords of each period and their weight from text data. In the second step, we derive vectors of top keywords of each topic from the pre-trained word embedding model. Then, we perform dimension reduction for the extracted vectors. Then, we formulate a semantic vector of each topic by calculating weight sum of keywords in each vector using topic weight of each keyword. In the third step, we visualize the semantic vector of each topic using matplotlib, and analyze the relationship between or among the topics based on the visualized result. The change of topic can be interpreted in the following manners. From the result of dynamic topic modeling, we identify rising top 5 keywords and descending top 5 keywords for each period to show the change of the topic. Existing many topic visualization studies usually visualize keywords of each topic, but our approach proposed in this study differs from previous studies in that it attempts to visualize each topic itself. To evaluate the practical applicability of the proposed methodology, we performed an experiment on 1,847 abstracts of artificial intelligence-related papers. The experiment was performed by dividing abstracts of artificial intelligence-related papers into three periods (2016-2017, 2018-2019, 2020-2021). We selected seven topics based on the consistency score, and utilized the pre-trained word embedding model of Word2vec trained with 'Wikipedia', an Internet encyclopedia. Based on the proposed methodology, we generated a semantic vector for each topic. Through this, by reflecting the meaning of keywords, we visualized and interpreted the themes by period. Through these experiments, we confirmed that the rising and descending of the topic weight of a keyword can be usefully used to interpret the semantic change of the corresponding topic and to grasp the relationship among topics. In this study, to overcome the limitations of dynamic topic modeling results, we used word embedding and dimension reduction techniques to visualize topics by era. The results of this study are meaningful in that they broadened the scope of topic understanding through the visualization of dynamic topic modeling results. In addition, the academic contribution can be acknowledged in that it laid the foundation for follow-up studies using various word embeddings and dimensionality reduction techniques to improve the performance of the proposed methodology.

Language Model Adaptation Based on Topic Probability of Latent Dirichlet Allocation

  • Jeon, Hyung-Bae;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.487-493
    • /
    • 2016
  • Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.

Applying Hebbian Theory to Enhance Search Performance in Unstructured Social-Like Peer-to-Peer Networks

  • Huang, Chester S.J.;Yang, Stephen J.H.;Su, Addison Y.S.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.591-601
    • /
    • 2012
  • Unstructured peer-to-peer (p2p) networks usually employ flooding search algorithms to locate resources. However, these algorithms often require a large storage overhead or generate massive network traffic. To address this issue, previous researchers explored the possibility of building efficient p2p networks by clustering peers into communities based on their social relationships, creating social-like p2p networks. This study proposes a social relationship p2p network that uses a measure based on Hebbian theory to create a social relation weight. The contribution of the study is twofold. First, using the social relation weight, the query peer stores and searches for the appropriate response peers in social-like p2p networks. Second, this study designs a novel knowledge index mechanism that dynamically adapts social relationship p2p networks. The results show that the proposed social relationship p2p network improves search performance significantly, compared with existing approaches.

High accuracy map matching method using monocular cameras and low-end GPS-IMU systems (단안 카메라와 저정밀 GPS-IMU 신호를 융합한 맵매칭 방법)

  • Kim, Yong-Gyun;Koo, Hyung-Il;Kang, Seok-Won;Kim, Joon-Won;Kim, Jae-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.34-40
    • /
    • 2018
  • This paper presents a new method to estimate the pose of a moving object accurately using a monocular camera and a low-end GPS+IMU sensor system. For this goal, we adopted a deep neural network for the semantic segmentation of input images and compared the results with a semantic map of a neighborhood. In this map matching, we use weight tables to deal with label inconsistency effectively. Signals from a low-end GPS+IMU sensor system are used to limit search spaces and minimize the proposed function. For the evaluation, we added noise to the signals from a high-end GPS-IMU system. The results show that the pose can be recovered from the noisy signals. We also show that the proposed method is effective in handling non-open-sky situations.

Grid-based Semantic Cloaking Method for Continuous Moving Object Anonymization (이동 객체 정보 보호를 위한 그리드 기반 시멘틱 클로킹 기법)

  • Zhang, Xu;Shin, Soong-Sun;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2013
  • Location privacy has been a serious concern for mobile users who use location-based services to acquire geographical location continuously. Spatial cloaking technique is a well-known privacy preserving method, which blurs an exact user location into a cloaked area to meet privacy requirements. However, cloaking for continuous moving object suffers from cloaked area size problem as it is unlikely for all objects travel in the same direction. In this paper, we propose a grid-based privacy preservation method with an improved Earth Mover's Distance(EMD) metric weight update scheme for semantic cloaking. We also define a representative cloaking area which protects continuous location privacy for moving users. Experimental implementation and evaluation exhibit that our proposed method renders good efficiency and scalability in cloaking processing time and area size control. We also show that our proposed method outperforms the existing method by successfully protects location privacy of continuous moving objects against various adversaries.

Semantic Image Retrieval Using RDF Metadata Based on the Representation of Spatial Relationships (공간관계 표현 기반 RDF 메타데이터를 이용한 의미적 이미지 검색)

  • Hwang, Myung-Gwun;Kong, Hyun-Jang;Kim, Pan-Koo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.5
    • /
    • pp.573-580
    • /
    • 2004
  • As the modern techniques have improved, people intend to store and manage the information on the web. Especially, it is the image data that is given a great deal of weight of the information because of the development of the scan and popularization of the digital camera and the cell-phone's camera. However, most image retrieval systems are still based on the text annotations while many images are creating everyday on the web. In this paper, we suggest the new approach for the semantic image retrieval using the RDF metadata based on the representation of the spatial relationships. For the semantic image retrieval, firstly we define the new vocabularies to represent the spatial relationships between the objects in the image. Secondly, we write the metadata about the image using RDF and new vocabularies. Finally. we could expect more correct result in our image retrieval system.

WV-BTM: A Technique on Improving Accuracy of Topic Model for Short Texts in SNS (WV-BTM: SNS 단문의 주제 분석을 위한 토픽 모델 정확도 개선 기법)

  • Song, Ae-Rin;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • As the amount of users and data of NS explosively increased, research based on SNS Big data became active. In social mining, Latent Dirichlet Allocation(LDA), which is a typical topic model technique, is used to identify the similarity of each text from non-classified large-volume SNS text big data and to extract trends therefrom. However, LDA has the limitation that it is difficult to deduce a high-level topic due to the semantic sparsity of non-frequent word occurrence in the short sentence data. The BTM study improved the limitations of this LDA through a combination of two words. However, BTM also has a limitation that it is impossible to calculate the weight considering the relation with each subject because it is influenced more by the high frequency word among the combined words. In this paper, we propose a technique to improve the accuracy of existing BTM by reflecting semantic relation between words.