• 제목/요약/키워드: semantic networks

검색결과 170건 처리시간 0.026초

B-WLL 시스템 MAC 프로토콜의 설계 및 검증 (Design and Validation of MAC Protocol for B-WLL System)

  • 백승권;김응배;한기준
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.468-478
    • /
    • 2002
  • 본 논문에서는 가입자망의 고속화를 실현하는 방안으로 개발되고 있는 B-WLL 시스템의 MAC 프로토콜을 설계하고 검증하였다. MAC 프로토콜의 설계는 DAVIC에서 제시하는 MAC 메시지를 사용하여 SDL로 설계했으며, 동적인 경쟁/예약 타임 슬롯할당 알고리즘을 적용했다. 또한 설계한 MAC 프로토콜의 유효성을 검증하기 위하여 ObjectGeode의 Simulation Builder를 이용하여 문법적인 오류를 검사하고, MSC(Message Sequence Chart)를 생성하여 프로토콜의 동작절차에 대해 검증하였다. 검증의 결과, 설계한 MAC 프로토콜이 절차에 따라 정확하게 동작했으며, B-WLL 시스템이 지원하는 모든 서비스에 대해 유효함을 확인했다.

TF-IDF를 활용한 한글 자연어 처리 연구 (A study on Korean language processing using TF-IDF)

  • 이종화;이문봉;김종원
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제28권3호
    • /
    • pp.105-121
    • /
    • 2019
  • Purpose One of the reasons for the expansion of information systems in the enterprise is the increased efficiency of data analysis. In particular, the rapidly increasing data types which are complex and unstructured such as video, voice, images, and conversations in and out of social networks. The purpose of this study is the customer needs analysis from customer voices, ie, text data, in the web environment.. Design/methodology/approach As previous study results, the word frequency of the sentence is extracted as a word that interprets the sentence has better affects than frequency analysis. In this study, we applied the TF-IDF method, which extracts important keywords in real sentences, not the TF method, which is a word extraction technique that expresses sentences with simple frequency only, in Korean language research. We visualized the two techniques by cluster analysis and describe the difference. Findings TF technique and TF-IDF technique are applied for Korean natural language processing, the research showed the value from frequency analysis technique to semantic analysis and it is expected to change the technique by Korean language processing researcher.

Improved Sliding Shapes for Instance Segmentation of Amodal 3D Object

  • Lin, Jinhua;Yao, Yu;Wang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5555-5567
    • /
    • 2018
  • State-of-art instance segmentation networks are successful at generating 2D segmentation mask for region proposals with highest classification score, yet 3D object segmentation task is limited to geocentric embedding or detector of Sliding Shapes. To this end, we propose an amodal 3D instance segmentation network called A3IS-CNN, which extends the detector of Deep Sliding Shapes to amodal 3D instance segmentation by adding a new branch of 3D ConvNet called A3IS-branch. The A3IS-branch which takes 3D amodal ROI as input and 3D semantic instances as output is a fully convolution network(FCN) sharing convolutional layers with existing 3d RPN which takes 3D scene as input and 3D amodal proposals as output. For two branches share computation with each other, our 3D instance segmentation network adds only a small overhead of 0.25 fps to Deep Sliding Shapes, trading off accurate detection and point-to-point segmentation of instances. Experiments show that our 3D instance segmentation network achieves at least 10% to 50% improvement over the state-of-art network in running time, and outperforms the state-of-art 3D detectors by at least 16.1 AP.

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

럭셔리 패션브랜드에 나타난 하위문화 양상의 의미 분석 (Analysis of the Meaning of Subculture Aspects in Luxury Fashion Brands)

  • 한자영
    • 한국의상디자인학회지
    • /
    • 제24권1호
    • /
    • pp.83-98
    • /
    • 2022
  • This study identified the characteristics of the subculture aspects that led to the success of luxury brands and analyzed the implications of those aspects. For this, semantic analysis in a socio-cultural context was performed. Additionally, this study took the theoretical background, the change in subculture and post-subculture, the digital youth generation, and the change in the meaning of subculture style into consideration. The subculture style aspect and its meaning in luxury fashion brands were analyzed as follows: First, there are challenges that betray the legitimacy or values of luxury brands. Through this, the brand gained recognition and increased sales, and the designer gained a reputation as an innovative creative director. It can be seen that more successful branding was promoted by securing a more subcultured fandom. Second, by combining subculture image fragments, these brands cater to the diverse tastes of a myriad of subcultures. This maximizes commercial profits. Third, most promotional marketing activities are collaborative and done digitally, which allows for a wider customer base, but the difference is in digital capabilities. Limited editions or application use on social networks can act as another driver. It is said that the distinction in high-priced luxury brands is not only driven by economic power but also by sub-cultural capital and digital ability.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

Research trends in the Korean Journal of Women Health Nursing from 2011 to 2021: a quantitative content analysis

  • Ju-Hee Nho;Sookkyoung Park
    • 여성건강간호학회지
    • /
    • 제29권2호
    • /
    • pp.128-136
    • /
    • 2023
  • Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.

인터넷 텍스트분석을 통한 대운하 유산 관광객 인식에 관한연구 : 소주시 평강역사 문화거리를 예로 들다 (A Study on the Perception of Grand Canal Heritage Visitors Based on Web Text Analysis:The Pingjiang Historical and Cultural District of Suzhou City as an example)

  • 중청강;징치웨이;남경현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.437-438
    • /
    • 2023
  • This paper takes the Pingjiang historical and cultural district of Suzhou city as an example, collects 1439 visitor review data from Ctrip.com with the help of Python technology, and uses web text analysis to conduct research on high-frequency words, semantic networks and emotional tendencies to comprehensively assess the tourist perception of the Grand Canal heritage. The study found that: natural and humanistic landscape, historical and cultural accumulation, and the style of Jiangnan Canal are fully reflected in the tourists' perception of Pingjiang historical and cultural district; tourists hold strong positive emotion towards Pingjiang Road, however, there is still more room for renovation and improvement of the historical and cultural district. Finally, countermeasure suggestions for improving the tourist perception of the Grand Canal heritage are given in terms of protection first, cultural integration and innovative utilization.

  • PDF

A Study on User Perception of Tourism Platform Using Big Data

  • Se-won Jeon;Sung-Woo Park;Youn Ju Ahn;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • 제13권1호
    • /
    • pp.108-113
    • /
    • 2024
  • The purpose of this study is to analyze user perceptions of tourism platforms through big data. Data were collected from Naver, Daum, and Google as big data analysis channels. Using semantic network analysis with the keyword 'tourism platform,' a total of 29,265 words were collected. The collection period was set for two years, from August 31, 2021, to August 31, 2023. Keywords were analyzed for connected networks using TexTom and Ucinet programs for social network analysis. Keywords perceived by tourism platform users include 'travel,' 'diverse,' 'online,' 'service,' 'tourists,' 'reservation,' 'provision,' and 'region.' CONCOR analysis revealed four groups: 'platform information,' 'tourism information and products,' 'activation strategies for tourism platforms,' and 'tourism destination market.' This study aims to expand and activate services that meet the needs and preferences of users in the tourism field, as well as platforms tailored to the changing market, based on user perception, current status, and trend data on tourism platforms.

텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로 (Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions)

  • 유소연;임규건
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.47-64
    • /
    • 2021
  • 전 세계적으로 퍼진 코로나 19 상황은 우리의 일상생활의 많은 부분에 영향을 끼쳤을 뿐만 아니라, 경제·사회 등 많은 부분에 걸쳐 막대한 영향력을 미치고 있다. 확진자와 사망자 수가 증가함에 따라 의료진과 대중은 불안, 우울, 스트레스 등 심리적인 문제를 겪고 있다고 한다. 장기적인 부정적인 감정은 사람들의 면역력을 감소시키고 신체적인 균형을 파괴할 수도 있으므로 코로나 19로 인한 심리적인 상태를 이해하는 것이 필수적인 상황이다. 본 연구에서는 코로나 19 감정과 관련된 뉴스 데이터를 수집하여, 텍스트 마이닝을 통해 키워드를 분류하고, 키워드 사이의 의미 네트워크 분석을 통해 단어들의 관계를 시각화하였다. 코로나 감정과 관련된 기사의 키워드에 나타난 단어들의 빈도수를 확인하고 이를 워드 클라우드로 분석하였다. 키워드 빈도 분석 결과 코로나 19 감정과 관련하여 '중국', '불안', '상황', '마음', '사회', '건강'과 같은 단어의 빈도가 높게 나타난 것을 확인할 수 있었다. 각 데이터 간 연결 중심성을 분석한 결과 키워드 중심성 네트워크에서 가장 중심적인 핵심어는 '심리'와 '코로나 19', '블루', '불안'이라는 단어가 높은 연결 중심성을 가지는 것을 확인할 수 있었다. 기사의 헤드라인에 나타난 주요 핵심어 사이의 동시 출현 빈도 네트워크를 그래프로 시각화한 결과, '코로나-블루' 쌍이 가장 굵게 표시되었고, '코로나-감정', '코로나-불안' 쌍이 비교적 굵은 선으로 표시된 것을 알 수 있었다. 코로나와 관련된 '블루'는 우울증을 의미하는 단어로, 코로나와 우울증은 이제 관심을 가져야 할 키워드임을 확인할 수 있었다. 본 연구에서는 장기화한 코로나 19 상황에서 신체적인 방역뿐만 아니라 심리적인 방역에도 힘써야 할 이 시기에 보건 정책담당자가 빠르고 복잡한 의사결정 과정에 도움이 되고자 미디어 뉴스를 모니터링 함으로써, 더욱더 쉬운 소셜 미디어 네트워크 분석 방법을 제시하고자 한다.