• Title/Summary/Keyword: semantic links

Search Result 39, Processing Time 0.024 seconds

Operational Experience in DB "TERMIN"

  • Shaburova, Natalya N.
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Information about the formation and filling (in 2014 to 2016) of a terminological dictionary on electronics and radioengineering and collective work (in 2017 to 2018) with a data bank "TERMIN" is presented in this article. In purpose of creating an instrument of navigating the modern scientific-technical space a net of terms with set semantic links is described. This set is based on the analysis of terms' definitions (each term is checked for inclusion in the definitions of all other terms; the definitions were borrowed from reputable reference editions: encyclopedias, dictionaries, reference books). The created model of a system that consists of different information sources, in which it (information) is indexed by the terminology of Russian State Rubricator of Scientific and Technical Information rubrics and/or keywords, is described. There is an access for the search in all these sources in the system. Searching inquiries are referred to in the language of these rubrics or formulated by arbitrary terms. The system is to refer to information sources and give out relevant information. In accordance with this model, semantic links of various types, which allow expanding a search at different modalities of query, should be set among data bank terms. Obtained links will have to increase semantic matching, i.e., they can provide actual understanding of the meaning of the information that is being sought.

Artificial intelligence approach for linking competences in nuclear field

  • Vincent Kuo;Gunther H. Filz;Jussi Leveinen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.340-356
    • /
    • 2024
  • Bridging traditional experts' disciplinary boundaries is important for nuclear knowledge management systems. However, expert competences are often described in unstructured texts and require substantial human effort to link related competences across disciplines. The purpose of this research is to develop and evaluate a natural language processing approach, based on Latent Semantic Analysis, to enable the automatic linking of related competences across different disciplines and communities of practice. With datasets of unstructured texts as input training data, our results show that the algorithm can readily identify nuclear domain-specific semantic links between words and concepts. We discuss how our results can be utilized to generate a quantitative network of links between competences across disciplines, thus acting as an enabler for identifying and bridging communities of practice, in nuclear and beyond.

A Study on Designing with RDF for manage of Web Service Metadata (웹 서비스 메타데이타 관리를 위한 RDF 설계에 관한 연구)

  • 최호찬;유동석;이명구;김차종
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.623-625
    • /
    • 2003
  • The Semantic Web stands out in the next generation web, recently. In the Semantic Web, any information resources is defined by semantics and semantic links is given among these. It is different from existing web service environment. RDF (Resource Description Framework) is the data model to describe metadata of web resource and is to support for semantic links. And it is much the same as WSDL (Web Serice Description Language). In theis paper, we propose the RDF design method to improve the search performance by integrating RDF data unit with WSDL. We confirm the performance and efficiency of search will be improved by using the proposed method.

  • PDF

Linkage Expansion in Linked Open Data Cloud using Link Policy (연결정책을 이용한 개방형 연결 데이터 클라우드에서의 연결성 확충)

  • Kim, Kwangmin;Sohn, Yonglak
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1045-1061
    • /
    • 2017
  • This paper suggests a method to expand linkages in a Linked Open Data(LOD) cloud that is a practical consequence of a semantic web. LOD cloud, contrary to the first expectation, has not been used actively because of the lack of linkages. Current method for establishing links by applying to explicit links and attaching the links to LODs have restrictions on reflecting target LODs' changes in a timely manner and maintaining them periodically. Instead of attaching them, this paper suggests that each LOD should prepare a link policy and publish it together with the LOD. The link policy specifies target LODs, predicate pairs, and similarity degrees to decide on the establishment of links. We have implemented a system that performs in-depth searching through LODs using their link policies. We have published APIs of the system to Github. Results of the experiment on the in-depth searching system with similarity degrees of 1.0 ~ 0.8 and depth level of 4 provides searching results that include 91% ~ 98% of the trustworthy links and about 170% of triples expanded.

Developing a Health Informatics Conceptual Framework for Representing Clinical Findings in Traditional East Asian Medicine (한의학 임상소견 표현을 위한 개념적 프레임워크 개발 연구)

  • Kim, Seon-Ho;Park, Kyung-Mo
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.121-129
    • /
    • 2011
  • Objective: The propose of this study is to build a conceptual framework for representing clinical findings in Traditional East Asian Medicine(TEAM). As the existing standard models have been developed without considering features of Traditional Medicine, in this study we introduced unique characteristics for the TEAM. Method: This study was composed of three steps. First, we analyzed whether the existing clinical information models are suitable for representing clinical findings. Second, we analyzed ISO/TS 22789 model which is a ISO medical informatics standard, to find out the problem by applying clinical findings of TEAM into the model. Finally, we defined semantic links and a concept hierarchy in our model based on the analyzed results. The model includes the concepts for clinical findings and terms, and the semantic links can be regarded as relations between concepts, so that the representating clinical findings are completed by connecting concepts with other concepts. Results: Our framework was developed by removing unnecessary semantic links, and adding some necessary ones based on ISO/TS 22789 model. The ISO/TS 22789 model has a simple concept hierarchy, but in this study we subdivided the hierarchy and also considered interoperability with other terminological systems and standard models. Conclusions: This research needs more discussions, but is meaningful as proposing a way how to develop Traditional Medicine terminological systems. This study shows the limitations of existing models in describing clinical findings for TEAM, and what should be considered to represent Traditional Medicine knowledge, and propose a solution to improve the problem.

Development of a Semantic Web Portal for Industry Knowledge Sharing (산업지식의 공유를 위한 시맨틱 웹 포탈의 설계 및 구축)

  • Park, Sang-Un
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.195-214
    • /
    • 2009
  • Semantic web portal is expected to overcome the shortcomings of the current web portals through advanced semantic web technologies and to be an effective and efficient method of knowledge sharing. In order to contribute to the knowledge sharing, semantic web portal needs to construct and integrate ontologies of each organization. Also, it needs to support search and navigation of inter-related knowledge. In this paper, we will design a semantic web portal that satisfies such requirements in the domain of display industry, and construct an ontology which links various knowledge of different fields. Moreover, we want to suggest an effective and automatic search/navigation method that supports customers who do not know the details of an ontology to easily get the desired results.

  • PDF

A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach (시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법)

  • Rho, Sang-Kyu;Park, Hyun-Jung;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.

Thesaurus Updating Using Collective Intelligence: Based on Wikipedia Encyclopedia (집단지성을 활용한 시소러스 갱신에 관한 연구: 위키피디아를 중심으로)

  • Han, Seung-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.3
    • /
    • pp.25-43
    • /
    • 2009
  • The purpose of this study is to suggest how the classic thesaurus structure of terms and links can be mined and updated from Wikipedia encyclopedia, which is the best practice of collective intelligence. In a comparison with ASIS&T thesaurus, it was found that Wikipedia contains a substantial coverage of domain-specific concepts and semantic relations. Furthermore, it was resulted that the structural characteristics of Wikipedia, such as redirects, categories, and mutual links are suitable to extract semantic relationships of thesaurus. It is needed to apply to update various thesauri, including multilingual thesaurus, in order to generalize the results of this research.

The Ontology-based Web Navigation Guidance System (온톨로지 기반 웹 항해 안내 시스템)

  • Jung, Hyosook;Kim, Heejin;Min, Kyungsil;Park, Seongbin
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.5
    • /
    • pp.95-103
    • /
    • 2009
  • In this paper, we propose a Web navigation guidance system which automatically provides a user with semantically related links based on an ontology. The system associates each web page to a concept in the ontology and creates new links between web pages by considering relationships of the concepts defined in the ontology. It focuses on enhancing web navigation by offering semantic links based on an ontology. We experimented the proposed system with 5th grade students who were performing tasks by searching Web pages and found that the degree of disorientation, the ratio of revisits for Web pages, and time spent for completing tasks for students in the experimental group were smaller than those for students in the control group. In addition, the task performance ratio for students in the experimental group were higher than that for students in the control group. It is expected that the proposed system can help design a navigable web site that is important in Web-based education.

  • PDF

Change Acceptable In-Depth Searching in LOD Cloud for Efficient Knowledge Expansion (효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색)

  • Kim, Kwangmin;Sohn, Yonglak
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.171-193
    • /
    • 2018
  • LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD provides detail descriptions of entities to public in RDF triple form. RDF triple is composed of subject, predicates, and objects and presents detail description for an entity. Links in LOD cloud, named identity links, are realized by asserting entities of different RDF triples to be identical. Currently, the identity link is provided with creating a link triple explicitly in which associates its subject and object with source and target entities. Link triples are appended to LOD. With identity links, a knowledge achieves from an LOD can be expanded with different knowledge from different LODs. The goal of LOD cloud is providing opportunity of knowledge expansion to users. Appending link triples to LOD, however, has serious difficulties in discovering identity links between entities one by one notwithstanding the enormous scale of LOD. Newly added entities cannot be reflected to searching results until identity links heading for them are serialized and published to LOD cloud. Instead of creating enormous identity links, we propose LOD to prepare its own link policy. The link policy specifies a set of target LODs to link and constraints necessary to discover identity links to entities on target LODs. On searching, it becomes possible to access newly added entities and reflect them to searching results without any omissions by referencing the link policies. Link policy specifies a set of predicate pairs for discovering identity between associated entities in source and target LODs. For the link policy specification, we have suggested a set of vocabularies that conform to RDFS and OWL. Identity between entities is evaluated in accordance with a similarity of the source and the target entities' objects which have been associated with the predicates' pair in the link policy. We implemented a system "Change Acceptable In-Depth Searching System(CAIDS)". With CAIDS, user's searching request starts from depth_0 LOD, i.e. surface searching. Referencing the link policies of LODs, CAIDS proceeds in-depth searching, next LODs of next depths. To supplement identity links derived from the link policies, CAIDS uses explicit link triples as well. Following the identity links, CAIDS's in-depth searching progresses. Content of an entity obtained from depth_0 LOD expands with the contents of entities of other LODs which have been discovered to be identical to depth_0 LOD entity. Expanding content of depth_0 LOD entity without user's cognition of such other LODs is the implementation of knowledge expansion. It is the goal of LOD cloud. The more identity links in LOD cloud, the wider content expansions in LOD cloud. We have suggested a new way to create identity links abundantly and supply them to LOD cloud. Experiments on CAIDS performed against DBpedia LODs of Korea, France, Italy, Spain, and Portugal. They present that CAIDS provides appropriate expansion ratio and inclusion ratio as long as degree of similarity between source and target objects is 0.8 ~ 0.9. Expansion ratio, for each depth, depicts the ratio of the entities discovered at the depth to the entities of depth_0 LOD. For each depth, inclusion ratio illustrates the ratio of the entities discovered only with explicit links to the entities discovered only with link policies. In cases of similarity degrees with under 0.8, expansion becomes excessive and thus contents become distorted. Similarity degree of 0.8 ~ 0.9 provides appropriate amount of RDF triples searched as well. Experiments have evaluated confidence degree of contents which have been expanded in accordance with in-depth searching. Confidence degree of content is directly coupled with identity ratio of an entity, which means the degree of identity to the entity of depth_0 LOD. Identity ratio of an entity is obtained by multiplying source LOD's confidence and source entity's identity ratio. By tracing the identity links in advance, LOD's confidence is evaluated in accordance with the amount of identity links incoming to the entities in the LOD. While evaluating the identity ratio, concept of identity agreement, which means that multiple identity links head to a common entity, has been considered. With the identity agreement concept, experimental results present that identity ratio decreases as depth deepens, but rebounds as the depth deepens more. For each entity, as the number of identity links increases, identity ratio rebounds early and reaches at 1 finally. We found out that more than 8 identity links for each entity would lead users to give their confidence to the contents expanded. Link policy based in-depth searching method, we proposed, is expected to contribute to abundant identity links provisions to LOD cloud.