• Title/Summary/Keyword: self-organizing neural networks

Search Result 129, Processing Time 0.029 seconds

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.

Customer's Job Identification using the Usage Patterns of Mobile Telecommunication (이동통신 사용패턴을 이용한 고객의 직업판정)

  • Lee Jae Sik;Cho You Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.115-132
    • /
    • 2004
  • Recently, as most companies recognize the importance of the customer relationship management, they strongly believe that they must know who their customers are. The job of a customer is very important information for us to understand the customer. However, since most customers are reluctant to reveal them-selves, they do not let us know their jobs, and even provide false information about their jobs. The target domain of our research is mobile telecommunication. In this research, we developed a system that identifies the customer's job by utilizing the Call Detail Record. Using artificial neural networks, we developed a two-step Job Identification System. In the first step, it identifies the four job classes, then in the second step, it subdivides these four job classes into seven jobs. The accuracy of identifying the seven jobs was $71.9\%$.

  • PDF

Temporal Dynamics and Patterning of Meiofauna Community by Self-Organizing Artificial Neural Networks

  • Lee, Won-Cheol;Kang, Sung-Ho;Montagna Paul A.;Kwak Inn-Sil
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.237-247
    • /
    • 2003
  • The temporal dynamics of the meiofauna community in Marian Cove, King George Island were observed from January 22 to October 29 1996. Generally, 14 taxa of metazoan meiofauna were found. Nematodes were dominant comprising 90.12% of the community, harpacticoid 6.55%, and Kinorhynchs 1.54%. Meiofauna abundance increased monthly from January to May 1996, while varying in abundance after August 1996. Overall mean abundance of metazoan meiofauna was $2634ind./10cm^2$ during the study periods, which is about as high as that found in temperate regions. Nematodes were most abundant representing $2399ind./10cm^2$. Mean abundance of harpacticoids, including copepodite and nauplius was $131ind./10cm^2$ by kinorhynchs $(26ind./10cm^2)$. The overall abundance of other identified organisms was $31ind./10cm^2$ Other organisms consisted of a total of 11 taxa including Ostracoda $(6ind./10cm^2)$, Polycheata $(7ind./10cm^2)$, Oligochaeta $(8ind./10cm^2)$, and Bivalvia $(6ind./10cm^2)$. Additionally, protozoan Foraminifera occurred at the study area with a mean abundance of $263ind./10cm^2$. Foraminiferans were second in dominance to nematodes. The dominant taxa such as nematodes, harpacticoids, kinorhynchs and the other tua were trained and extensively scattered in the map through the Kohonen network. The temporal pattern of the community composition was most affected by the abundance dynamics of kinorhynchs and harpacticoids. The neural network model also allowed for simulation of data that was missing during two months of inclement weather. The lowest meiofauna abundance was found in August 1996 during winter. The seasonal changes were likely caused by temperature and salinity changes as a result of meltwater runoff, and the physical impact by passing icebergs.

Analysis of Classification Characteristics for Rainfall-runoff and TOC Variation according to the Change of Map Size and Array using SOM (SOM 적용을 위한 Map Size와 Array의 변화에 따른 강우-유출 및 TOC관계 분석)

  • Park, Sung-Chun;Kim, Yong-Gu;Roh, Kyong-Bum;Lee, Han-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2066-2070
    • /
    • 2008
  • 본 연구는 인공신경망(Artificial Neural Networks: ANNs)기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론을 이용한다. 자기조직화 특성을 이용하여 스스로 학습이 가능하고, 구조상 수행이 빨라 학습 단계에 소요되는 시간을 줄 일 수 있는 장점을 가진 자기조직화 이론을 도입하고, 수질자료 중 전체 유기물의 양을 나타내며 난분해성 물질에 대한 해석이 가능하고 재현성이 탁월한 TOC 와 강우-유출량 자료의 분포적 양상과 특징을 분석하여 예측을 위한 모형화 과정에 기여하고자 한다. 최적의 Map Size와 Map Array 결정을 위해 수집된 강우와 유출량자료 및 TOC 자료에 대해 Garcia의 경험식을 이용하여 Map을 구성하는 단위구조의 총 수(M)를 산정하여 M값에 따른 종방향 및 횡방향 크기를 결정하는 다수의 Map 크기를 검토하고, 또한 Map 배열은 2차원 배열의 사각형배열(Rectangular array)과 육각형배열(Hexagonal array)에 대해서도 복합적으로 검토하여 최적의 특성조건을 결정하여 강우-유출 및 TOC 관계의 분할특성을 분석한다.

  • PDF

Postprocessing Algorithm of Fingerprint Image Using Isometric SOM Neural Network (Isometric SOM 신경망을 이용한 지문 영상의 후처리 알고리듬)

  • Kim, Sang-Hee;Kim, Yung-Jung;Lee, Sung-Koo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.110-116
    • /
    • 2008
  • This paper presents a new postprocessing method to eliminate the false minutiae, that caused by the skelectonization of fingerprint image, and an image compression method using Isometric Self Organizing Map(ISOSOM). Since the SOM has simple structure, fast encoding time, and relatively good classification characteristics, many image processing areas adopt this such as image compression and pattern classification, etc. But, the SOM shows limited performances in pattern classification because of it's single layer structure. To maximize the performance of the pattern classification with small code book, we a lied the Isometric SOM with the isometry of the fractal theory. The proposed Isometric SOM postprocessing and compression algorithm of fingerprint image showed good performances in the elimination of false minutiae and the image compression simultaneously.

The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining (데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석)

  • Lee, Su Hyun;Park, Jung Min;Lee, Hyoung Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.111-131
    • /
    • 2015
  • There are only a handful number of research conducted on pattern analysis of corporate distress as compared with research for bankruptcy prediction. The few that exists mainly focus on audited firms because financial data collection is easier for these firms. But in reality, corporate financial distress is a far more common and critical phenomenon for non-audited firms which are mainly comprised of small and medium sized firms. The purpose of this paper is to classify non-audited firms under distress according to their financial ratio using data mining; Self-Organizing Map (SOM). SOM is a type of artificial neural network that is trained using unsupervised learning to produce a lower dimensional discretized representation of the input space of the training samples, called a map. SOM is different from other artificial neural networks as it applies competitive learning as opposed to error-correction learning such as backpropagation with gradient descent, and in the sense that it uses a neighborhood function to preserve the topological properties of the input space. It is one of the popular and successful clustering algorithm. In this study, we classify types of financial distress firms, specially, non-audited firms. In the empirical test, we collect 10 financial ratios of 100 non-audited firms under distress in 2004 for the previous two years (2002 and 2003). Using these financial ratios and the SOM algorithm, five distinct patterns were distinguished. In pattern 1, financial distress was very serious in almost all financial ratios. 12% of the firms are included in these patterns. In pattern 2, financial distress was weak in almost financial ratios. 14% of the firms are included in pattern 2. In pattern 3, growth ratio was the worst among all patterns. It is speculated that the firms of this pattern may be under distress due to severe competition in their industries. Approximately 30% of the firms fell into this group. In pattern 4, the growth ratio was higher than any other pattern but the cash ratio and profitability ratio were not at the level of the growth ratio. It is concluded that the firms of this pattern were under distress in pursuit of expanding their business. About 25% of the firms were in this pattern. Last, pattern 5 encompassed very solvent firms. Perhaps firms of this pattern were distressed due to a bad short-term strategic decision or due to problems with the enterpriser of the firms. Approximately 18% of the firms were under this pattern. This study has the academic and empirical contribution. In the perspectives of the academic contribution, non-audited companies that tend to be easily bankrupt and have the unstructured or easily manipulated financial data are classified by the data mining technology (Self-Organizing Map) rather than big sized audited firms that have the well prepared and reliable financial data. In the perspectives of the empirical one, even though the financial data of the non-audited firms are conducted to analyze, it is useful for find out the first order symptom of financial distress, which makes us to forecast the prediction of bankruptcy of the firms and to manage the early warning and alert signal. These are the academic and empirical contribution of this study. The limitation of this research is to analyze only 100 corporates due to the difficulty of collecting the financial data of the non-audited firms, which make us to be hard to proceed to the analysis by the category or size difference. Also, non-financial qualitative data is crucial for the analysis of bankruptcy. Thus, the non-financial qualitative factor is taken into account for the next study. This study sheds some light on the non-audited small and medium sized firms' distress prediction in the future.

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.