• 제목/요약/키워드: self-heating

검색결과 272건 처리시간 0.047초

열병합발전 아파트의 난방조절방식과 온열환경 (Thermal Environment and Heating Regulation System of the Co-Generation Apartment)

  • 윤정숙
    • 대한가정학회지
    • /
    • 제30권3호
    • /
    • pp.131-140
    • /
    • 1992
  • The purpose of this study was to investigate the heating regulation systems and the thermal environment of the Co-Generation apartment house in winter. Personal self-administration and interview method were used in the survey of this study. The respondents were 352 housewives who resided in Mokdong apartement using Co-Generation heating systems. Data was analyzed using SPSS PC+ computer package. The results of this study were summarised as follow; The typical patterns of heating regulation systems were intermittent and partial heating in the living room and bedroom exclusive of kitchen area. The present condition of the thermal environment were relatively warm in winter and Heatng regulation systems were influenced by type of location. Determinants of the thermal sensation and thermal comfort were the type of location of apartment as a architectural factor, clo as a personal factor.

  • PDF

실린더형 MoSi2계 발열체의 유도가열 적용 (Induction Heating of Cylinderical MoSi2-based Susceptor)

  • 이성철;김요한;명재하;김배연
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.553-558
    • /
    • 2019
  • 본 연구에서는 슬립캐스팅 성형법을 이용하여 실린더형 $MoSi_2$계 세라믹 서스셉터를 개발하여 고온 유도가열에 적용시켰다. $MoSi_2$계 소재는 SHS법(Self-propagating High-temperature Synthesis)으로 합성하였고 XRD 분석을 통해 합성된 상과 결정구조를 확인하였다. 합성된 소재로 실린더 성형체를 제작하기 위해 슬립캐스팅을 진행하였고 슬립의 고형분 함량 및 유지시간을 조절하여 실린더 성형체의 두께를 제어하였다. 최종적으로 성형체 소결을 통해 유도가열 발열체를 제작하였고 열처리과정 중 표면에 형성된 $SiO_2$층은 SEM/EDS 분석을 통해 확인하였다. 서스셉터로서의 가열성능을 평가하기 위해 유도가열기로 일정한 출력을 인가하였을 때 $(Mo,W)Si_2$ 실린더 서스셉터의 표면온도를 측정하여 출력 2 kW를 인가하였을 때 발열특성을 분석하였으며, 서스셉터 표면의 최고 온도는 $1457^{\circ}C$, 평균 승온속도는 $19^{\circ}C/s$로 우수한 가열 특성을 나타냈다.

제로에너지 솔라하우스(KIER ZeSH)의 에너지 자립도 및 경제성 분석 (The Study on the Energy self-sufficiency and Economic Analysis of KIER Zero Energy Solar House)

  • 정선영;백남춘;유창균;윤응상;윤종호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • In this study, the energy and economic analysis of KIER Zero Energy Solar House (KIER ZeSH) was carried out. KIER ZeSH was designed and constructed in the end of 2009 for the purpose of more than 70% energy self-sufficiency in total load as well as less than 20% of additional construction cost. The several building energy conservation technologies like as super insulation, high performance window, wast heat recovery system, etc and renewable energy system. The renewable heating and cooling system is a kind of solar thermal system combined with geo-source heat pump as a back-up device. The capacity of 3.15kW solar BIPV system was also installed on the roof. The measurement by monitering system of ZeSH was conducted for one year from November 2009 to October 2010. The energy self-sufficiency and economic analysis were conducted based on the this monitering result. As a result, the energy self sufficiency is about 83% which is higher than that of the target and the payback period is 11 years.

  • PDF

DRNN을 이용한 최적 난방부하 식별 (Optimal Heating Load Identification using a DRNN)

  • 정기철;양해원
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1231-1238
    • /
    • 1999
  • This paper presents an approach for the optimal heating load Identification using Diagonal Recurrent Neural Networks(DRNN). In this paper, the DRNN captures the dynamic nature of a system and since it is not fully connected, training is much faster than a fully connected recurrent neural network. The architecture of DRNN is a modified model of the fully connected recurrent neural network with one hidden layer. The hidden layer is comprised of self-recurrent neurons, each feeding its output only into itself. In this study, A dynamic backpropagation (DBP) with delta-bar-delta learning method is used to train an optimal heating load identifier. Delta-bar-delta learning method is an empirical method to adapt the learning rate gradually during the training period in order to improve accuracy in a short time. The simulation results based on experimental data show that the proposed model is superior to the other methods in most cases, in regard of not only learning speed but also identification accuracy.

  • PDF

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • 김창구;김웅태
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF

고주파 유도가열 장치를 이용한 알루미늄 박판 점착 복합방수시트 조인트부의 시공성 (Constructability of a Waterproofing Sheet Joint Combining an Aluminum Thin-film and Viscosity Layer Using a High-frequency Inductive Heating Apparatus)

  • 장상묵;김윤호;최성민
    • 한국건축시공학회지
    • /
    • 제14권2호
    • /
    • pp.163-169
    • /
    • 2014
  • Engineers in the construction field have been using bonded waterproofing sheets in an attempt to resolve the imbalance in the quality, the risk of fire, safety of workers, and environmental pollution, as well as to eliminate separate use of organic adhesives on the surface of concrete. Recently, self-laminated waterproofing sheets have been developed. The purpose of this research is to find an appropriate processing speed according to the changes in physical properties, and visual observation of the waterproofing sheets laminated by the aluminum thin-film and viscosity layer that can be attached through self-adhesiveness on the surface of concrete and waterproofing sheets. Therefore, this research is conducted using a physical performance test. Based on the result of the test, when the high-frequency inductive heating apparatus was used, an improved adhesion and bonding stability effect were confirmed after the anti-hydrostatic pressure and bond strength in the temperature condition, and the surface observation in the processing speed condition.

Self-heating Induced Linear Kink Effect in Poly-Si TFTs

  • Lee, Seok-Woo;Kang, Ho-Chul;Oh, Kum-Mi;Kim, Eu-Gene;Park, Soo-Jeong;Lim, Kyoung-Moon;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1038-1040
    • /
    • 2005
  • Linear kink effect (LKE) induced mainly by selfheating on the reliability of divided channel poly-Si TFTs has been studied. The LKE was enhanced for compact designed structure to achieve narrow bezel, which was explained by the difference in heat dissipation capability, thus self-heating immunity in TFT.

  • PDF

고온 특성을 위한 AlGaAs/GaAs HBT의 설계에 관한 연구 (Ohmic Resistance of AlGaAs/GaAs HBT at High Temperature)

  • 이준영;신훈법;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.366-370
    • /
    • 2002
  • GaAs has become a very popular material for the fabrication of high frequency, low noise and microwave power devices. GaAs devices are also well suited for high temperature operation because of the large band gap of this material. The standard GaAs technology and device structures have to be modified for stable operation at high temperature. In this paper, AlGaAs/GaAs HBT considering stable ohmic contact at high temperature as well as thermal effect such as self-heating effect are introduced. All the data obtained study will be used as input data for the simulator and the result will be compared with an analytical model available in this study,

  • PDF

Regulation of Star Formation in Turbulent, Multiphase Interstellar Media

  • 김창구;김웅태
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the star formation rate (SFR) in turbulent, multiphase, galactic gaseous disks. Our simulation domain is axisymmetric, and local in the radial direction and global in the vertical direction. Our models include galactic rotation, vertical density stratification, self-gravity, radiative heating and cooling, and thermal conduction, but do not include spiral-arm features. Turbulence in our models is driven by momentum feedback from supernova explosion events occurring in localized dense regions formed by thermal and gravitational instabilities. Self-consistent radiative heating, representing enhanced/reduced FUV photons from the star formation, is also taken into account. By controlling three parameters (the gas surface density, the stellar disk density, and the angular rotation rate) that characterize local galactic disks, we explore how the SFR depends on the background environmental state. We also discuss the relation between the SFR and the gas surface density found in our numerical models in comparison with observations.

  • PDF