• Title/Summary/Keyword: self-desiccation

Search Result 30, Processing Time 0.029 seconds

A Study About Chloride Penetration Considering Temperature, Humidity Distribution and Admixtures (온도.습도분포 및 혼화재를 고려한 염분침투에 관한 연구)

  • Choi, Jong-Kwon;Kim, Ki-Hyun;Cha, Soo-Won;Jang, Seung-Yup;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.553-556
    • /
    • 2006
  • Chloride penetration is the main reason which causes the deterioration of concrete structures. Chloride penetration of concrete structures due to chemical-physical phenomena can be profitably analyzed by means of model-based simulations. The main purpose of this paper is to analyze chloride penetration considering self-desiccation, convection and admixture(GBFS: granulated blast-furnace slag) effects. Basic governing equations are modified properly to apply these effects to chloride penetration analysis. Temperature and relative humidity data of In-Cheon from Korea Meteorological Administration are used for analyzing chloride penetration.

  • PDF

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석)

  • Choi, Hang-Seok;Kwak, Tae-Hoon;Lee, Chul-Ho;Lee, Dong-Seop;Stark, T.D.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.5-15
    • /
    • 2011
  • This paper presents two analysis methods for characterizing the non-linear finite strain consolidation behavior of highly deformable dredged soil deposits along with the fundamental parameters obtained in the companion paper; that is, the zero effective stress void ratio, the non-linear relationships of void ratio-effective stress and void ratio-hydraulic conductivity. The simplified Morris's analytical solution (2002) and the widely recognized numerical program, PSDDF (primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill) for both single and double drainage conditions are adopted in this paper to verify a series of laboratory experiments for self-weight consolidation of the Incheon clay and Kaolinite. The comparisons show that the analysis methods proposed herein can properly simulate the long-term non-linear finite strain consolidation behavior for dredged soils in the field. In addition, a case study for the artificial Craney Island has been conducted to illustrate the importance of obtaining appropriate non-linear finite strain consolidation parameters and the applicability of PSDDF in promoting dredged soil disposal.

A Study on the Hydration Reaction Model of Expansive Additive of Ettringite-Gypsum Type (에트링가이트-석탄 복합계 팽장재의 수화반응 모델에 관한 연구)

  • Park Sun Gyu;Takahumi Noguchi;Kim Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.581-586
    • /
    • 2005
  • High-performance concrete (HPC), which is particularly sensitive to self-desiccation, is required to be durable even in severe environmental conditions, i.e. costal area, cold district, etc. However, in recent years, some attention was particularly given to cracking sensitivity of high performance concrete at early age. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age under restrained condition, nd, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. This shrinkage-introduced crack produces a major serviceability problem for concrete structures. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of autogenous shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. As a result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

Relation between Autogenous Shrinkage of Concrete and Relative Humidity, Capillary Pressure, Surface Energy in Pore (공극 내 상대습도, 모세관압력, 표면에너지 변화에 따른 콘크리트 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio. Internal humidity change and shrinkage strain were about 10%, 4% and $320\times10^{-6}$, $120\times10^{-6}$ respectively on concrete with water binder ratio 0.3, 0.4 and from the results, humidity change and shrinkage represented the strong linear relation regardless of mixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20 nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

A Study on the Estimation of Loss Rate of Dredged Fills (준설토의 유실률 평가에 관한 연구)

  • Kim, Hong-Taek;Kim, Seog-Yeol;Kang, In-Kyu;Park, Jae-Eock
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • Volume change of the dredged soils is composed of loss amount of the soil particles flowing over an outflow weir with water and settlements due to both the self-weight consolidation in reclaimed layer and the desiccation at the surface of reclaimed layer. In order to estimate the amount of soil particles flowing over an outflow weir with water, the breakage theory and the results of hydrometer analyses. To verify a validity of the proposed procedure, evaluated loss ratio is compared with various estimates from the other existing methods.

  • PDF

Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives

  • Roychand, R.;De Silva, S.;Law, D.;Setunge, S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.113-124
    • /
    • 2016
  • This paper presents the effect of silica fume and nano silica, used individually and in combination with the set accelerator and/or hydrated lime, on the properties of class F high volume ultra fine fly ash (HV-UFFA) cement composites, replacing 80 % of cement (OPC). Compressive strength test along with thermogravimetric analysis, X-ray diffraction and scanning electron microscopy were undertaken to study the effect of various elements on the physico-chemical behaviour of the blended composites. The results show that silica fume when used in combination with the set accelerator and hydrated lime in HV-UFFA cement mortar, improves its 7 and 28 day strength by 273 and 413 %, respectively, compared to the binary blended cement fly ash mortar. On the contrary, when nano silica is used in combination with set accelerator and hydrated lime in HV-UFFA cement mortar, the disjoining pressure in conjunction with the self-desiccation effect induces high early age micro cracking, resulting in hindering the development of compressive strength. However, when nano silica is used without the additives, it improves the 7 and 28 day strengths of HV-UFFA cement mortar by 918 and 567 %, respectively and the compressive strengths are comparable to that of OPC.

Effects of Fine LWA and SAP as Internal Water Curing Agents

  • de Sensale, Gemma Rodriguez;Goncalves, Arlindo Freitas
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.229-238
    • /
    • 2014
  • Typical high-performance concrete (HPC) mixtures are characterized by low water-cementitious material ratios, high cement contents, and the incorporation of admixtures. In spite of its superior properties in the hardened state, HPC suffers from many practical difficulties such as its sensitivity to early-age cracking (which is associated with self-desiccation and autogenous shrinkage). In this context, conventional curing procedures are not sufficiently effective to address these limitations. In order to overcome this issue, two strategies,which are based on the use of internal reservoirs of water, have been recently developed.One of these strategies is based on the use of lightweight aggregates (LWA), while the other is based on the use of superabsorbent polymers (SAP). This paper studies and compares the efficiency of the LWA and SAP approaches.Moreover, some of the theoretical aspects that should be taken into account to optimize their application for internal curing of HPC are also discussed. Two fine LWA's and one SAP are studied in terms of autogenous deformation and compressive strength. Increasing the amounts of LWAor SAP can lead to a reduction of the autogenous deformation and compressive strength (especially when adding large amounts). By selecting appropriate materials and controlling their amount, size, and porosity, highly efficient internal water curing can be ensured.

Amino Acid-Based Material for the Complementary Therapy of Decubitus Ulcers

  • Nogueira, Frederico;Gouveia, Isabel C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.747-758
    • /
    • 2017
  • Chronic wounds, pressure sores, lesions, and infections of microbial origin in bedridden, paralyzed, or malnutrition patients remain the object of study of many researchers. A variety of factors behind the development of these disorders are related to the patient's immune system, making it unable to respond effectively to the treatment of the wound. These factors can be properly controlled, giving particular importance to the ethiology and stage of the wound, as well as the time periods corresponding to the replacement of the dressings. The present research reports a novel foam/soft material, ${{\small}L}$-Cys-g-PCL, with an application for decubitus/pressure ulcers, especially for wounds with a difficult healing process due to infections and constant oxidation of the soft tissues. During this work, the interactions between S. aureus and ${{\small}L}$-Cys-g-PCL foam were studied under conditions that simulate decubitus ulcers; namely, pH and exudate. The effects of duration of grafting (1 or 8 h) and pH (7.0 and 8.9) on wettability, surface energy, swelling, and porosity were also evaluated. Results showed an effective microbicidal activity exhibiting an inhibition ratio of 99.73% against S. aureus. This new ${{\small}L}$-Cys-g-PCL soft material showed saftey to contact skin, ability to be shaped to fill in sunken holes (craters) - pressure ulcers stage III - and to act as a smart material responsive to pH, which can be tailored to develop better swelling properties at alkaline pH where exudates are normally higher, so as to address exudate self-cleaning and prevention of desiccation.

A Study on the Estimation Method of Loss Ratio in Dredged Fills (준설매립토의 유실율 평가방법 정립에 관한 연구)

  • Kim, Seog-Yeol;Choi, Hyo-Pum;Park, Jae-Eock;Kim, Seung-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.67-77
    • /
    • 2002
  • Volume change of the dredged soils is composed of the volume loss of soil particle flowing over an outflow weir with water and settlement due to both the self-weight consolidation in reclaimed layer and the desiccation at the surface of reclaimed layer. In order to estimate the amount of soil particles flowing over an outflow weir with water, the evaluation procedure of loss ratio of the dredged soils is proposed in the present study based on the Marsal's modified breakage theory and the results of hydrometer analyses. To verify a validity of the proposed procedure, evaluated loss ratio is compared with results from the other existing methods. The model test results and those of field test were compared and analyzed. Also, the variation of soil loss ratio was examined through the model test in the lab.

  • PDF

A Study on the Prediction of Shear Strength and Determination of the Embarkation Time of Equipment in Dredged Clay Fills (준설점토지반의 전단강도 예측 및 장비투입시기 결정에 관한 연구)

  • Kim, Hong Taek;Kim, Seog Yol;Kang, In Kyu;Kim, Seung Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.47-56
    • /
    • 2001
  • In the present study, mainly to determine the embarkation time of equipment in dredged clay fills, an analytical approach is performed to predict a variation of the undrained shear strength in the outermost layer. In this approach, Gibson's non-dimensional linear constant defining the relationship between the void ratio and the effective stress is employed. Also in this approach, void ratios and settlements associated with the volume change due to the self-consolidation and the desiccation shrinkage are evaluated at various elapsed times based on the finite difference solution technique proposed by the authors(1999) and the developed computer program named as DSCON. Predicted results(water content ratio, unit weight and undrained shear strength) are compared with those of laboratory model tests conducted with soil samples obtained from the Koheung site. Based on the predicted undrained shear strengths, possible embarkation time of a equipment is also evaluated. In addition, further analyses are made to indirectly verify the efficiency of the analytical approach proposed in the present study using the PSDDF computer program which can consider the drainage efficiency.

  • PDF