• Title/Summary/Keyword: self-adjoint formulation

Search Result 4, Processing Time 0.018 seconds

A New Material Sensitivity Analysis for Electromagnetic Inverse Problems

  • Byun, Jin-Kyu;Lee, Hyang-Beom;Kim, Hyeong-Seok;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.77-82
    • /
    • 2011
  • This paper presents a new self-adjoint material sensitivity formulation for optimal designs and inverse problems in the high frequency domain. The proposed method is based on the continuum approach using the augmented Lagrangian method. Using the self-adjoint formulation, there is no need to solve the adjoint system additionally when the goal function is a function of the S-parameter. In addition, the algorithm is more general than most previous approaches because it is independent of specific analysis methods or gridding techniques, thereby enabling the use of commercial EM simulators and various custom solvers. For verification, the method was applied to the several numerical examples of dielectric material reconstruction problems in the high frequency domain, and the results were compared with those calculated using the conventional method.

Finite Element Analysis for Vibration of Laminated Plate Using a Consistent Discrete Theory Part I : Variational Principles (복합재료적층판의 진동해석을 위한 유한요소모델 I. 변분원리의 유도)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • A family of variational principles governing the dynamics of laminated plate has been derived using a variationally consistent shear deformable discrete laminated plate theory with particular reference to finite element procedures. The theoretical basis for the derivation is Sandhu's generalized procedure for the variational formulation of linear coupled boundary value problem. As the bilinear mapping to write the operator matrix of the field equations in self-adjoint form, convolution product was employed. Boundary conditions, initial conditions and probable internal discontinuity were explicitly included in the governing functionals. Some interesting extensions and specializations of the general variational principle were presented, which can provide many different finite element formulations for the problem.

  • PDF

An improved parametric formulation for the variationally correct distortion immune three-noded bar element

  • Mukherjee, Somenath;Manju, S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.261-281
    • /
    • 2011
  • A new method of formulation of a class of elements that are immune to mesh distortion effects is proposed here. The simple three-noded bar element with an offset of the internal node from the element center is employed here to demonstrate the method and the principles on which it is founded upon. Using the function space approach, the modified formulation is shown here to be superior to the conventional isoparametric version of the element since it satisfies the completeness requirement as the metric formulation, and yet it is in agreement with the best-fit paradigm in both the metric and the parametric domains. Furthermore, the element error is limited to only those that are permissible by the classical projection theorem of strains and stresses. Unlike its conventional counterpart, the modified element is thus not prone to any errors from mesh distortion. The element formulation is symmetric and thus satisfies the requirement of the conservative nature of problems associated with all self-adjoint differential operators. The present paper indicates that a proper mapping set for distortion immune elements constitutes geometric and displacement interpolations through parametric and metric shape functions respectively, with the metric components in the displacement/strain replaced by the equivalent geometric interpolation in parametric co-ordinates.

A Mixed Variational Principle of Fully Anisotropic Linear Elasticity (이방성탄성문제의 혼합형변분원리)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 1991
  • In this paper, a mixed variational principle applicable to the linear elasticity of inhomogeneous anisotropic materials is presented. For derivation of the general variational principle, a systematic procedure for the variational formulation of linear coupled boundary value problems developed by Sandhu et al. is employed. Consistency condition of the field operators with the boundary operators results in explicit inclusion of boundary conditions in the governing functional. Extensions of admissible state function spaces and specialization to a certain relation in the general governing functional lead to the desired mixed variational principle. In the physical sense, the present variational principle is analogous to the Reissner's recent formulation obtained by applying Lagrange multiplier technique followed by partial Legendre transform to the classical minimum potential energy principle. However, the present one is more advantageous for the application to the general anisotropic materials since Reissner's principle contains an implicit function which is not easily converted to an explicit form.

  • PDF