• Title/Summary/Keyword: self inductance

Search Result 132, Processing Time 0.028 seconds

A Study for Frequency Characteristics of Solenoid-Type RF Chip Inductors (크기에 따른 솔레노이드 형태 RF 칩 인덕터의 주파수 특성 연구)

  • Kim, Jae-Wook
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.145-151
    • /
    • 2007
  • In this work, small-size, high-performance solenoid-type RF chip inductors utilizing a low-loss ${Al_2}{O_3}$ core material were investigated. The size of the chip inductors fabricated in this work were $0.86{\times}0.46{\times}0.45m^3$, $1.5{\times}1.0{\times}0.7m^3$, $2.1{\times}1.5{\times}1.0m^3$, and $2.4{\times}2.0{\times}1.4m^3$ and copper (Cu) wire with $27{\sim}40{\mu}m$ diameter was used as the coils. High frequency characteristics of the inductance, quality factor, and impedance of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). It was observed that the developed inductors with the number of turns of 7 have the inductance of 13 to 100nH and exhibit the self-resonant frequency (SRF) of 6.4 to 1.1GHz. The SRF of inductors decreases with increasing the inductance and the inductors have the quality factor of 50 to 80 in the frequency range of 300MHz to 1.3GHz. In this study, small-size solenoid-type RF chip inductors with high inductance and high quality factor were fabricated successfully.

  • PDF

LAM 공정을 위한 Underpass를 갖지 않는 나선형 박막 인덕터의 주파수 특성 (Frequency Characteristics of Spiral Planar Inductor without Underpass for LAM Process)

  • Kim, Jae-Wook
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2008
  • In this study, we propose that the structures of spiral inductors have the environment advantage utilizing direct-write and LAM(Laser Ablation of Microparticles) processes without process step of lithography and etching etc. of existing semiconductor process. The structures of inductors have Si thickness of 540${\mu}m$, $SiO_2$ thickness of 3${\mu}m$. The width of Cu coils and the space between segments have 30${\mu}m$, respectively, using for direct-write and LAM processes. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The inductors without underpass and via have inductance of 1.11nH over the frequency range of 300 to 800 MHz, quality-factor of maximum 38 at 5 GHz, SRF of 18 GHz. Otherwise, inductors with underpass and via have inductance of 1.12nH over the frequency range of 300 to 800 MHz, quality-factor of maximum 35 at 5 GHz, SRF of 16 GHz.

  • PDF

Frequency Characteristics of Octagonal Spiral Planar Inductor (팔각 나선형 박막 인덕터의 주파수 특성)

  • Kim, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1284-1287
    • /
    • 2012
  • In this study, we propose the structures of octagonal spiral planar inductors without underpass and via, and confirm the frequency characteristics. The structures of inductors have Si thickness of $300{\mu}m$, $SiO_2$ thickness of $7{\mu}m$. The width of Cu coils and the space between segments have $20{\mu}m$, respectively. The number of turns of coils have 3. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The octagonal spiral planar inductors have inductance of 2.5nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18.9 at 5 GHz, SRF of 11.1 GHz. Otherwise, square spiral planar inductors have inductance of 2.8nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18.9 at 4.9 GHz, SRF of 10.3 GHz.

Modeling of a Dual Stator Induction Generator with and Without Cross Magnetic Saturation

  • Slimene, Marwa Ben;Khlifi, Mohamed Arbi;Fredj, Mouldi Ben;Rehaoulia, Habib
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.284-289
    • /
    • 2015
  • This paper discusses general methods of modelling magnetic saturation in steady-state, two-axis (d & q) frame models of dual stator induction generators (DSIG). In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon) is demonstrated, with and without cross-saturation. For that purpose, two distinct models of DSIGs, with and without cross-saturation, are specified. These two models are verified by an application that is sensitive to the presence of cross-saturation, to prove the validity of these final methods and the equivalence between all developed models. Advantages of some of the models over the existing ones and their applicability are discussed. In addition, an alternative is given to evaluate all saturation factors (static and dynamic) by just calculating the static magnetizing inductance which is simply the magnitude of the ratio of the magnetizing flux to the current. The comparison between the simulation results of the proposed model with experimental results gives a good correspondence, especially at startup.

Conceptual Design of a 10 HP Homopolar Motor with Superconducting Windings

  • Park, Sang-Ho;Kim, Yun-Gil;Lee, Se-Yeon;Choi, Kyeong-Dal;Hahn, Song-Yop;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.9-12
    • /
    • 2011
  • Superconducting motor has a lot of benefits from high power density for ship propulsions, so a number of research project are in progress worldwide. Despite of all the benefits, there is always a difficulty of cryo-moving part for conventional air-core superconducting synchronous motors. In order to get rid of this moving cryogenic part, we propose a homopolar superconducting synchronous motor, which has high temperature superconducting armature and field coils. The rotor is supposed to be made of iron only and excited by the stationary HTS field coils. The stationary field coils make the cooling system simple and easy to realize because there is no cryo-moving part. A design result of a 10 hp homopolar synchronous motor is presented in this paper. The self and mutual inductance of the motor having the size of air gap as variable parameter are calculated by a 3-dimemsional finite element method. The value of design variables such as the dimension of a motor and the number of turns, etc. is decided by performing the coordinate transformation of the calculated inductance. The operating frequency is supposed to be below 5 Hz for low rotating speed which is needed for a purpose of ship propulsion. Low frequency also has the benefit of low AC losses.

Manufacture and Characteristics of the Planar Transformer using low power loss magnetic materials (저손실 자심재료를 이용한 평면변압기 제조 및 동작특성)

  • Lee, Hae-Yon;Heo, Jeong-Seob;Kim, Hyun-Sik;Park, Hye-Young;Ustinov, Evgeniy
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.19-22
    • /
    • 2004
  • The resonant planar transformer, which had power capacity of 300 W, input voltage of 220 V, output voltage of 15 V, and switching frequency of 500 kHz, was designed and manufactured by using the planar core with large effective area and the flat copper lead frames for miniaturization and high efficiency of the switching mode power supply (SMPS). As well as, a resonant converter equipped with the above mentioned planar transformer was manufactured and electromagnetic characteristics were investigated. The numerical value of turns for 1st and 2nd winding were 12 and 2 respectively. The self inductance of 1st winding was 33.2 ${\mu}H$, very low leakage inductance of 1.27 ${\mu}H$, and the coupling factor of 0.98 were obtained at switching frequency of 300 kHz. The high efficiency of 88.21 % for the SMPS equipped with planar transformer was obtained at power capacity of 300 W.

  • PDF

Modeling and Simulation for Development of Self-Oscillation Ballast of Endura Electrodeless lamp (엔두라 무전극 램프용 자려식 안정기 개발을 위한 모델 및 시뮬레이션 연구)

  • Han, Soo-Bin;Park, Suk-In;Jung, Hak-Geun;Jung, Bong-Man;Seong, Eu-Gene
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.1-9
    • /
    • 2007
  • Characteristics of electrodeless lamp as a load of the ballast are different compared to normal fluorescent lamp because the lame includes an inductance due to coupling magnetics for inductive discharging process. This increased parameter makes the development of self-oscillation type ballast more complex and time consuming. Practical simulation method for an easy design of self-oscillation type ballast especially for Endura lamp, is presented by using a model and various analysis of simulation. Results of experiment are given for a verification of proposed method.

The Maximum Torque/Efficiency of SRM Driving for Self-Tuning Control (자기동조 제어에 의한 SRM의 최대 토크/효율 운전)

  • Seo J.Y.;Cha H.R.;Kim K.H.;Lim Y.C.;Jong D.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.677-680
    • /
    • 2003
  • The control of the SRM(Switched Reluctance Motor) is usually based on the non-linear inductance profiles with positions. So determination of optimal switching angle is very different. we present self-tuning control of SRM for maximum torque and efficiency with phase current and shaft position sensor During the sample time, micro-controller checks the number of pre-checked pulse. After micro-controller calculates between two data, it move forward or backward turn-off angle. When the turn-off angle is fixed optimal turn-off angle, turn-on angle moves forward or backward by a step using self-tuning control method. And then, optimal turn-off angle is searched once again. As such a repeating process, turn-on/off angle is moves automatically to obtain the maximum torque and efficiency. The experimental results are presented to validate the self-tuning algorithm.

  • PDF

Turn-on/off Angle for Maximum Torque of SRM by Using Self-tuning Control (SRM의 자기동조 방식에 의한 최대토크의 턴-온/오프각 제어)

  • Seo Jong-Yun;Cha Hyun-Rok;Seo Jung-Chul;Yang Hyong-Yeol;Kim Kwang-Heon;Lim Young-Cheol;Jang Do-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.243-246
    • /
    • 2001
  • The control of the SRM(Switched Reluctance Motor) is usually based on the non-linear inductance profiles with positions. So determination of optimal switching angle is very different. This paper proposed that the determination method of turn-on/off angle in the SRM drives is to maintain the high torque, which is realized by using self-tuning control method. During the sampling time, a number of pulses from the encoder are checked by using micro-controller. And compared with pre-checked a number of pulses. After calculating difference between two data, turn-on/off angle moves forward or backward direction by using self-tuning method. The optimal turn-on/off angle is determined by iterating such a process and the maximum torque is maintained. Experimental results are provided to demonstrate the validity of the self-tuning controller.

  • PDF

Analysis of Electrical Characteristics of Interdigital Capacitor with Graphenes (그래핀이 결합된 인터디지털 커패시터의 전기적 특성분석)

  • Lee, Hee-Jo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1064-1071
    • /
    • 2015
  • In this paper, the electrical characteristics of interdigital capacitor with single-layer and multi-layer graphene were compared and analyzed in the microwave region. In equivalent circuit, a capacitor coupled with graphene showed the clear difference in electrical components such as resistance, inductance, and capacitance. In particular, for the capacitor with single-layer graphene, additional inductance and resistance occurred and the electrode resistance was also increased. Meanwhile, the self-resonance frequency of capacitor was shifted toward lower frequency region and its transmitted characteristic was considerably improved at frequency ranging from 0.4 to 4 GHz. The electrical characteristics of the capacitor with multi-layer graphene were somewhat different than the bare capacitor. In conclusion, we could confirm that single-layer graphene greatly influenced the electrical characteristics and performances of interdigital capacitor compared to multi-layer graphene.