• Title/Summary/Keyword: selenium fortified feed

Search Result 6, Processing Time 0.023 seconds

Review for Selenium-fortified Functional Products of Livestock (셀레늄 강화 기능성 축산물에 관한 고찰)

  • Kim, W.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.5 no.1
    • /
    • pp.36-56
    • /
    • 2003
  • Selenium(Se) is an essential trace element in the human body. Main function of this element is a catalytic part of antioxidant enzymes that protect cells against the attacks of free radicals that are produced during normal metabolism of the body. Se is also essential for normal function of the immune system and thyroid gland. It also appears to be a key nutrient in counteracting the development of virulence and inhibiting HIV(human immunodeficiency virus) progression to AIDS. It is also required for sperm motility and reduces the depression. Therefore, it is very meaningful that livestock producers generate Se-fortified animal products, such as Se-egg, Se-milk, Se-pork, Se-chicken and Se-beef from the point of producers as well as human heath. However, regulation on Se usage and Se-fortified food/feed is far from being clear in Korea even though Se should be carefully monitored because of its toxicity. Thus, one has to be aware of Se properties when designing Se-fortified animal products.

Analysis of selenoaminoacids and selenoproteins in blood serum of sows fed by selenium fortified feed (셀레늄강화 사료를 먹인 모돈 혈청에서의 셀레노아미노산 및 셀레노단백질 분석)

  • Park, Myungsoon;Lee, Sung Hoon;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.196-203
    • /
    • 2015
  • Selenium species (inorganic selenium, selenoaminoacids, and selenoproteins) were analyzed using anion exchange and affinity chromatography, which were connected to ICP/MS for the blood serum of sows fed by seleniumfortified feed. The Anion Exchange PRP X-100 column was used for the analysis of inorganic selenium (Se4+ and Se6+) and selenoaminoacids. The HEP column was used to separate SelP from GPx+SeAlb in selenoproteins. A quantitative analysis was performed using the post-column isotope dilution technique. The lactating sows were divided into three groups and fed by selenium fortified feed (organic 0.3 mg/kg, 0.6 mg/kg and inorganic 0.6 mg/kg) for four weeks. The test groups showed increases in selenoaminoacids compared with the control group, except the inorganic feed group. There was no significant difference between the organic feed groups. All test groups showed increases in selenoproteins. In particular, SelP showed a large increase that was 1.5 times higher than the other proteins.

Effects of Different Products and Levels of Selenium on Growth, Nutrient Digestibility and Selenium Retention of Growing-finishing Pigs

  • Tian, J.Z.;Yun, M.S.;Kong, C.S.;Piao, L.G.;Long, H.F.;Kim, J.H.;Lee, J.H.;Lim, J.S.;Kim, C.H.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • This experiment was conducted to evaluate the effects of different selenium (Se) products (inorganic, organic A, organic B) added at two supplemental dietary Se levels (0.1 and 0.3 mg/kg) on growth performance, nutrient digestibility and Se retention in growing-finishing pigs. A $3{\times}2$ factorial arrangement of treatments was used in a RCB design, with a non-Se-fortified basal diet serving as the negative control. A total of 56 crossbred pigs (28 male and 28 female pigs) initially weighing an average $28.45{\pm}0.53kg$ BW were allotted to each treatment with four pigs per pen on the basis of sex and weight. Two pigs per pen were selected and bled from the anterior vena cava at 3- weekly intervals to analyze Se concentration. In the growing phase (0-6 weeks), increased ADFI was observed when pigs were fed organic Se compared to those fed the control diet or inorganic Se treatment (p<0.05). Pigs fed inorganic Se had a great ADFI than pigs fed organic Se (p<0.05) in the late finishing phase (7-12 weeks), although there were no differences in whole period ADFI between organic or inorganic Se products. During 12 weeks of the whole experimental period, serum Se concentration increased linearly when dietary Se level increased regardless of Se products (p<0.05). Both dietary Se source (p<0.05) and Se level (p<0.01) influenced the Se concentration of various pig tissues at end of this experiment and Se content was the highest in the kidney. For the determination of nutrient digestibility, a metabolic trial was conducted in 3 replicates in randomized complete block (RCB) design. A total of 21 barrows ($50.21{\pm}0.62kg$ of average BW) were used in the metabolic study. Selenium supplementation had no effect on nutrient digestibility except for crude protein. Crude protein digestibility increased with dietary supplementation of organic Se (A) compared with other forms of Se products or control diet (p<0.05). Consequently, this experiment indicated that dietary Se products and levels had no effect on growth performance of pigs. Se concentration in tissues and serum was increased in proportion to dietary Se level, especially when organic Se was provided. Although pigs were fed organic forms of Se, bioavailability of organic forms varied among products, consequently bioactivity of organic products to the animals should be evaluated before practical application in animal feed.

Influences of Feeding Seleniferous Whole Crop Barley on Growth Performance, Blood and Carcass Characteristics, and Tissue Selenium Deposition in Finishing Barrows (셀레늄함유 청보리 급여가 거세비육돈의 생산성, 혈액 및 도체특성, 조직 내 셀레늄 축적에 미치는 영향)

  • HwangBo, Soon;Jo, Ik Hwan;Kim, Guk Won;Choi, Chang Weon;Lee, Sung Hoon;Han, Ouk Kyu;Park, Tae Il;Choi, In Bae
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.828-834
    • /
    • 2012
  • The present study has been conducted to investigate the effects of feeding seleniferous whole crop barley (WCB) to finishing pigs on their growth performance, blood and carcass characteristics as well as on tissue selenium deposition. A total of 40 cross-bred barrows ((Landrace${\times}$Yorkshire)${\times}$Duroc) were allotted to five replicates of four treatments. Each replicate was arranged to 2 pigs per pen; the experimental period lasted for 6 weeks. The finishing pigs were fed diets containing 0.1 (non-seleniferous WCB as a control), 0.2, 0.4 and 0.6 ppm of selenium (Se) by supplementing the diets with seleniferous WCB. The isonitrogenous and isocaloric diets containing 5% non-seleniferous or seleniferous WCB were formulated. Feeding seleniferous WCB did not affect (p<0.05) the feed intake and BW gain. Total blood lipid concentration was significantly (p<0.05) decreased with increasing Se levels. Total blood cholesterol concentration for the control was significantly (p<0.05) higher than that for 0.4 and 0.6 ppm of Se treatments. Increasing the Se levels in WCB significantly (p<0.05) decreased blood triglyceride concentration; however, the levels increased immunoglobulin G and selenium concentrations. Feeding seleniferous WCB did not affect the carcass rate, backfat thickness and meat quality as well as yield grades. The Se concentration in the kidney, liver and loin were significantly (p<0.05) increased with increasing levels of seleniferous WCB. The results indicated that feeding seleniferous WCB may improve the blood characteristics related to lipid metabolism and thus, could produce selenium-fortified pork. Moreover, it is shown that the dietary optimal selenium level to depose selenium in porcine tissues by utilizing seleniferous WCB would be 0.4 mg of Se/kg of ration. Moreover, when 100 g of pork produced from pigs raised under such condition is served to consumers, it meets the minimum recommended daily requirements (40 ${\mu}g$) of dietary selenium proposed by the World Health Organization (1996).

Studies on Selenium-fortified Functional Hanwoo-Beef by Utilizing Spent Mushroom Composts I. Studies on the Manufacture of Fermented Feeds by Using Spent Mushroom Composts and Fortification of Organic Selenium (버섯폐배지를 이용한 셀레늄강화 기능성 한우고기 생산에 관한 연구 I. 버섯폐배지 이용 발효사료제조와 유기셀레늄 강화에 관한 연구)

  • Lee, Jang-Hyung;Kim, Wan-Young
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.102-115
    • /
    • 2004
  • Main objectives of this study were to increase digestibilities of indigestible ingredients in spent mushroom composts (SMC) consisted of sawdust mainly as well as to fortify conversion of inorganic Se present in SMC to organic Se via fermentable microbial actions. Experimental feeds were designed to contain the increasing level of selenium (0.06ppm, 0.54ppm, 1.26ppm and 1.86ppm) in combination with SMCs of Se-enriched and non-Se mushrooms. Feeds were also fermented using commercial microbial feed additives (Sambae, Ltd., Korea) comprised Saccharomyces, Bacillus, Aspergillus, Streptococcus and Actinomycetes before feeding trial for Hanwoo (Korean native cattle). Those were fermented for 0, 12, 24, and 48 hrs. Initial pH was linearly increased as Se concentration increases or the proportion of SMC of Se-enriched mushroom increased (p<0.0001). pH values of fermented feeds (0.54ppm, 1.26ppm and 1.86ppm) containing SMC of Se-enriched mushroom were not different since 12 hrs of fermentation time and their pH was significantly lowered compared to control group. The increasing level of Se concentration in fermented feeds showed significant differences in organic and inorganic Se contents and proportion of organic Se among treatments. As a SMC proportion of Se-enriched mushrooms in the fermented feed was increased, organic Se proportion was significantly decreased (p<0.0001). The control treatment (0.06ppm) comprising the non-Se SMC only was estimated of the organic Se to be 100% and the treatment groups containing the increasing level of Se were estimated of organic Se to be approximately 70%.

Studies on Selenium-fortified Functional Hanwoo-Beef by Utilizing Spent Mushroom Composts II. Effects of Spent Composts of Se-Enriched Mushrooms as the Dietary Se Source on Selenium Deposition in the Muscular Tissue and Plasma Glutathione Peroxidase Activity in the Finishing Hanwoo Steer (버섯폐배지를 이용한 셀레늄강화 기능성 한우고기 생산에 관한 연구 II. 셀레늄강화 버섯폐배지 첨가가 한우의 근육조직 내 셀레늄 축적과 혈중 glutathione peroxidase(GSH-Px)활성에 미치는 영향)

  • Kim, Wan-Young;Lee, Kee-Jong
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.116-135
    • /
    • 2004
  • This study was conducted to investigate effects of spent composts of Se-enriched mushrooms as the dietary Se source on muscular Se deposition and plasma glutathione peroxidase (GSH-Px) activity in the finishing Hanwoo steer. Twenty Hanwoo steers were used in the experiment and they were divided into four groups in a randomized complete block design with five replicates. Treatments were four levels (0.1, 0.3, 0.6 and 0.9ppm as fed basis) of dietary Se from the combination with spent composts of Se-enriched mushrooms and/or Se non-enriched mushrooms, in which each treatment was formulated with corn and corn gluten meal and so forth. Treatment diets were fed to Hanwoo steers for 90 days until the slaughter. Dry matter intakes had no significant differences among treatments and there were no significant differences for performances such as total BW gain and ADG among treatments. The Se concentration in blood was linearly increased with increasing dietary selenium levels and reached a plateau level after 8 weeks (p<0.001). Plasma GSH-Px activities had the similar trends to blood Se concentrations by showing that the increased dietary Se level significantly increased plasma GSH-Px activities of both total and Se-dependent (p<0.001). Muscle Se contents of Se-supplemented groups were linearly increased by 1.35 ~ 1.68 folds compared with the control group (0.1ppm; 0.273㎍/dry g) and especially those of the hind legs for 0.9ppm treatment showed the highest Se content as shown 0.457㎍ per dry gram (p<0.01) corresponding to approximately 70% increase of the control group. Se retention rate in the muscle of dietary Se originated from spent composts of Se-enriched mushrooms was estimated of maximum approximately 30% and dietary Se content showed the significant correlation with plasma GSH-Px activities and muscle Se contents (p<0.01). Accordingly, Se present in spent composts of Se-enriched mushroom as the dietary Se source not only had great bioavailabilities showing higher blood Se concentration and plasma GSH-Px activities, but also increased Se deposition in the muscle for Hanwoo beef cattle.