• 제목/요약/키워드: selective withdrawal alternative

검색결과 2건 처리시간 0.014초

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

탁수조절을 위한 소양호 선택취수설비 설치 효과 분석 (Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir)

  • 정세웅;박형석;윤성완;류인구
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.