• Title/Summary/Keyword: selective uptake

Search Result 91, Processing Time 0.028 seconds

Effects of L-trans-pyrrolidine-2,4-dicarboxylate, a Glutamate Uptake Inhibitor, on NMDA Receptor-mediated Calcium Influx and Extracellular Glutamate Accumulation in Cultured Cerebellar Granule Neurons

  • Oh, Seikwan;Shin, Chang-Sik;Patrick-P. McCaslin;Seong, Yeon-Hee;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • Glutamate uptake inhibitor, L-trans-pyrrolidine-2, 4-dicarboxylate (PDC, $20{\mu}M$) elevated basal and N-methyl-D-aspartate (NMDA, $100{\mu}M$)-induced extracellular glutamate accumulation, while it did not augment kainate $100{\mu}M$-induced glutamate accumulation in cultured cerebellar granule neurons. However, pretreatment with PDC for 1 h significantly reduced NMDA-induced glutamate accumulation, but did not affect kainate-induced response. Pretreatment with glutamate $(5{\mu}M)$ for 1 h also reduced NMDA-induced glutamate accumulation, but did not kainate-induced response. Upon a brief application (3-10 min), PDC did neither induce elevation of intracellular calcium concentration $([Ca^{2+}]_i)$ nor modulate NMDA-indLiced $[Ca^{2+}]_1$ elevation. Pretreatment with PDC for 1 h reduced NMDA-induced $[Ca^{2+}]_1$ elevation, but it did not reduce kainate-induced $[Ca^{2+}]_1$ elevation. These results suggest that glutamate concentration in synaptic clefts of neurana cells is increased by prolonged exposure (1 h) of the cells to PDC, and the accumulated glutamate subsequently induces selective desensitization of NMDA receptor.

  • PDF

Improvement of K+ and Na+ Ion homeostasis and salt tolerance by Co-inoculation of arbuscular mycorrhizal fungi (AMF) and spore associated bacteria (SAB)

  • Selvakumar, Gopal;Kim, Kiyoon;Roy, C. Aritra;Jeon, Sunyong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.246-246
    • /
    • 2017
  • Salinity inhibits plant growth and restricts the efficiency of arbuscular mycorrhizal fungi. The selective uptake of nutrients from the soil and their effective transport to host roots make it essential for plant growth and development under salt stress. AMF spore associated bacteria shown to improve mycorrhizal efficiency under stress. Thus, this study aimed to understand the co-inoculation efficiency of AMF and SAB on maize growth and ion homeostasis under salt stress. Two AMF strains and one SAB were inoculated with maize either alone or in combination with one another. The results of our study showed that AMF and SAB co-inoculation significantly improved dry weight and nutrient uptake of maize under salt stress. Co-inoculation significantly reduced proline accumulation in shoots and Na+ accumulation in roots. Co-inoculation treatment also exhibited the high K+/Na+ ratios in roots at 25 mM NaCl. Mycorrhizal colonization showed positive influence for regulation of ZmAKT2, ZmSOS1 and ZmSKOR gene expressions, contributing to K+ and Na+ ion homeostasis. CLSM view showed that SAB were able move and localize into inter and intra cellular spaces of maize roots. In addition, CLSM view of AMF spores showed that gfp-tagged SAB also associated on the spore outer hyaline layer.

  • PDF

Folate Receptor-Specific Positron Emission Tomography Imaging with Folic Acid-Conjugated Tissue Inhibitor of Metalloproteinase-2

  • Kim, Sung-Min;Choi, Naeun;Hwang, Seungkyun;Yim, Min Su;Lee, Jung-Sik;Lee, Sang-Mok;Cho, Gyunggoo;Ryu, Eun Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3243-3248
    • /
    • 2013
  • The tissue inhibitor of metalloproteinase-2 (TIMP-2) inhibits matrix metalloproteinases activity and modulates cellular proliferation and apoptosis. The human serum albumin-TIMP-2 with folic acid conjugate (termed HT2-folate) was synthesized to promote uptake through folate receptors (FRs), and a corresponding radio-labeled compound was prepared for tumor diagnosis by positron emission tomography (PET). $^{68}Ga$-NOTA-HT2-folate was synthesized from $^{68}Ga$ and the NOTA chelator with HT2-folate. The fusion protein was identified using MALDI-TOF mass spectrometry. The radioligand was prepared with a high radiochemical yield. Cell-surface association of $^{68}Ga$-NOTA-HT2-folate significantly increased over time in FR-positive tumor cells. In animal PET and biodistribution studies, tumor uptake was very high as early as 1 h after radioligand injection. Folate conjugation enhanced the selective receptor-targeting efficacy of HT2 in FRexpressing tumors, and its radioligand will be useful as an in vitro tool and for in vivo tumor diagnosis by PET imaging.

Uptake and Expression of Foreign Genes Using Seed-Derived Embryos of Rice (벼 종자 유래 배에서 외래유전자의 도입과 발현)

  • 정구흥
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.77-83
    • /
    • 1994
  • DNA uptake in dry embryos of rice by DNA imbibition was detected by monitoring the expression of chimeric vectors. The selective markers of expression vectors used were ${\beta}-glucuronidase$ ronidase (GUS) and hygromycin phosphotransferase (HPT) genes under the control of CaMV35 S promoter. Frequency of transient expression of the foreign gene was generally 30-50% varying according to the types of vectors and rice cultivars. Dot blot analysis and DNA sequence analysis of inverse polymerase chain reaction products showed that selected rice in hygromycin B (HmB) medium had HPT gene and CaMV35S promoter DNA sequence in genomic DNA of rice. To investigate what ratio of rice having two marker genes simultaneously as rice embryos imbibed the vector DNA having two HPT and GUS gene, transform ants selected in lImB medium were subjected to PCR for GUS gene. It was shown that about 90 percentage of surviving ones in HmB medium had GUS gene.S gene.

  • PDF

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

Increases in Doxorubicin Sensitivity and Radioiodide Uptake by Transfecting shMDR and Sodium/Iodide Symporter Gene in Cancer Cells Expressing Multidrug Resistance (다약제내성 암세포에서 shMDR과 Sodium/Iodide Symporter 유전자의 이입에 의한 Doxorubicin 감수성과 방사성옥소 섭취의 증가)

  • Ahn, Sohn-Joo;Lee, Yong-Jin;Lee, You-La;Choi, Chang-Ik;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Lee, In-Kyu;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.209-217
    • /
    • 2007
  • Purpose: Multidrug resistance (MDR) of the cancer cells related to mdr1 gene expression can be effectively treated by selective short hairpin RNA for mdr1 gene (shMDR). Sodium/iodide symporter (NIS) gene is well known to have both reporter and therapeutic gene characteristics. We have co-transfected both shMDR and NIS gene into colon cancer cells (HCT15 cell) expressing MDR and Tc-99m sestamibi and I-125 uptake were measured. In addition, cytotoxic effects of doxorubicin and I-131 therapy were also assessed after transfection. Material and Methods: At first, shMDR was transfected with liposome reagent into human embryonic kidney cells (HEK293) and HCT cells. shMDR transfection was confirmed by RT-PCR and western blot analysis. Adenovirus expressing NIS (Ad-NIS) gene and shMDR (Ad-shMDR) were co-transfected with Ad-NIS into HCT15 cells. Forty-eight hours after infection, inhibition of P-gycoprotein (Pgp) function by shMDR was analyzed by a change of Tc-99m sestamibi uptake and doxorubicin cytotoxicity, and functional activity of induced NIS gene expression was assessed with I-125 uptake assay. Results: In HEK293 cells transfected with shMDR, mdr1 mRNA and Pgp protein expressions were down regulated. HCT15 cells infected with 20 MOI of Ad-NIS was higher NIS protein expression than control cells. After transfection of 300 MOI of Ad-shMDR either with or without 10 MOI of Ad-NIS, uptake of Tc-99m sestamibi increased up to 1.5-fold than control cells. HCT15 cells infected with 10 MOI of Ad-NIS showed approximately 25-fold higher I-125 uptake than control cells. Cotransfection of Ad-shMDR and Ad-NIS resulted in enhanced cytotoxic by doxorubicin in HCT15 cells. I-131 treatment on HCT15 cells infected with 20 MOI of Ad-NIS revealed increased cytotoxic effect. Conclusion: Suppression of mdr1 gene expression, retention of Tc-99m sestamibi, enhanced doxorubicin cytotoxicity and increases in I-125 uptake were achieved in MDR expressing cancer cell by co-transfection of shMDR and NIS gene. Dual therapy with doxorubicin and radioiodine after cotransfection shMDR and NIS gene can be used to overcome MDR.

Selective Cytotoxicity of a Novel Platinum (II) Coordination Complex on Human Gastric Cancer Cell Lines and Normal Kidney Cells

  • Jung, Jee-Chang;Kim, Young-Kyu;Yim, Sung-Vin;Park, Seung-Joon;Chung, Joo-Ho;Chang, Sung-Goo;Lee, Kyung-Tae;Rho, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.283-291
    • /
    • 1999
  • We have synthesized novel platinum (II) coordination complex containing cis-1,2-diaminocyclohexane (DACH) as a carrier ligand and 1,2-bis(diphenylphosphino)ethane (DPPE) as leaving group. Furthermore, nitrate was added to improve the water-solubility. A new series of [Pt(cis-DACH)(DPPE)] $2NO_3(PC)$ was evaluated its antitumor activity on various MKN-45 human gastric adenocarcinoma cell-lines and normal primary cultured kidney cells. The new platinum complex demonstrated high efficacy in the cytotoxicity on MKN-45 cell-lines as well as adriamycin-resistant (MKN-45/ADR) and cisplatin-resistant (MKN-45/CDDP) cells. The cytotoxicities of PC were found quite less than those of cisplatin in rabbit proximal renal tubular cells, human renal cortical cells and human renal cortical tissues using MTT assay, $[^3H]-thymidine$ uptake and glucose consumption tests. Based on these results, this novel platinum (II) coordination complex, was considered as better a valuable lead for improving antitumor activities with low nephrotoxicities in the development of a new clinically available anticancer chemotherapeutic agents.

  • PDF

Reaction of Potassium 2-Thexyl-1,3,2-dioxaborinane Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Sung Eun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.531-537
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess potassium 2-thexyl-1,3,2-dioxaborinane hydride(KTDBNH) with 55 selected compounds containing representative functional groups under standardized conditions (tetrahydrofuran, TEX>$0^{\circ}C$, reagent : compound=4 : 1) was examined in order to define the characteristics of the reagent for selective reductions. Benzyl alcohol and phenol evolve hydrogen immediately. However, primary, secondary and tertiary alcohols evolve hydrogen slowly, and the rate of hydrogen evolution is in order of $1^{\circ}$> $2^{\circ}$> $3^{\circ}$. n-Hexylamine is inert toward the reagent, whereas the thiols examined evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to give the corresponding alcohols. Cinnamaldehyde is rapidly reduced to cinnamyl alcohol, and further reduction is slow under these conditions. The reaction with p-benzoquinone dose not show a clean reduction, but anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol. Carboxylic acids liberate hydrogen immediately, further reduction is very slow. Cyclic anhydrides slowly consume 2 equiv of hydride, corresponding to reduction to the caboxylic acid and alcohol stages. Acid chlorides, esters, and lactones are rapidly and quantitatively reduced to the corresponding carbinols. Epoxides consume 1 equiv hydride slowly. Primary amides evolve 1 equiv of hydrogen readily, but further reduction is slow. Tertiary amides are also reduced slowly. Both aliphatic and aromatic nitriles consume 1 equiv of hydride rapidly, but further hydride uptake is slow. Analysis of the reaction mixture with 2,4-dinitrophenylhydrazine yields 64% of caproaldehyde and 87% of benzaldehyde, respectively. 1-Nitropropane utilizes 2 equiv of hydride, one for hydrogen evolution and the other for reduction. Other nitrogen compounds examined are also reduced slowly. Cyclohexanone oxime undergoes slow reduction to N-cyclohexylhydroxyamine. Pyridine ring is slowly attacked. Disulfides examined are reduced readily to the correponding thiols with rapid evolution of 1 equiv hydrogen. Dimethyl sulfoxide is reduced slowly to dimethyl sulfide, whereas the reduction of diphenyl sulfone is very slow. Sulfonic acids only liberate hydrogen quantitatively without any reduction. Finally, cyclohexyl tosylate is inert to this reagent. Consequently, potassium 2-thexyl-1,3,2-dioxaborinane hydride, a monoalkyldialkoxyborohydride, shows a unique reducing characteristics. The reducing power of this reagent exists somewhere between trialkylborohydrides and trialkoxyborohydride. Therefore, the reagent should find a useful application in organic synthesis, especially in the field of selective reduction.

Characterization of Microsomal $Ca^{2+}$ Uptake in Tomato Root Tissues (토마토 뿌리조직에서 분리한 마이크로솜의 $Ca^{2+}$ 흡수 특성)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.116-122
    • /
    • 1999
  • In order to characterize the property of $Ca^{2+}$ transport in plant cell, microsomes were prepared from the roots of tomato and microsomal $^{45}Ca^{2+}$ uptake was measured. When 1 mM vanadate, a selective inhibitor of P-type ATPases, 50 mM $NO_3^-$, a specific inhibitor of vacuolar $H^{+}-ATPase$, and both of these inhibitors were treated, the microsomal $^{45}Ca^{2+}$ uptakes were inhibited by 20, 33 and 47%, respectively. The inhibitory effects of these two inhibitors were investigated by using a protonophore, gramicidin. When the chemical gradient of $H^{+}$ was relieved by gramicidin, the uptake was decreased by 30%, implying the presence of $Ca^{2+}/H^+$ antiporter in the microsomal membrane. In the $^{45}Ca^{2+}$ uptake experiment, the effect of gramicidin was independent of vanadate-induced inhibition. However, when the activity of vacuolar $H^{+}-ATPase$ was inhibited by $NO_3^-$, the effect of gramicidin was severely decreased. Meanwhile, thapsigargin, a specific antagonist of ER/SR-type $Ca^{2+}-ATPase$, inhibited the microsomal $^{45}Ca^{2+}$ uptake and the maximum inhibitory effect was obtained at $10\;{\mu}M$. The effect of thapsigargin was blocked by $NO_3^-$ and gramicidin, but not by vanadate. These results imply that vanadate directly inhibits the activity of $Ca^{2+}-ATPase$; however, $NO_3^-$ and thapsigargin block the activity of $Ca^{2+}/H^+$ antiporter by inhibiting the vacuolar $H^{+}-ATPase$. In conclusion, the microsomal $^{45}Ca^{2+}$ uptakes are mediated by two major enzymes, $Ca^{2+}-ATPase$ and $Ca^{2+}/H^+$ antiporter in tomato root tissue.

  • PDF