• Title/Summary/Keyword: selective rake (S-RAKE) receiver

Search Result 5, Processing Time 0.02 seconds

Performance Comparison of Coherent and Non-Coherent Detection Schemes in LR-UWB System

  • Kwon, Soonkoo;Ji, Sinae;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.518-523
    • /
    • 2012
  • This paper presents new coherent and non-coherent detection methods for the IEEE 802.15.4a low-rate ultra-wideband physical layer with forward error correction (FEC) coding techniques. The coherent detection method involving channel estimation is based on the correlation characteristics of the preamble signal. A coherent receiver uses novel iterated selective-rake (IT-SRAKE) to detect 2-bit data in a non-line-of-sight channel. The non-coherent detection method that does not involve channel estimation employs a 2-bit data detection scheme using modified transmitted reference pulse cluster (M-TRPC) methods. To compare the two schemes, we have designed an IT-SRAKE receiver and a MTRPC receiver using an IEEE 802.15.4a physical layer. Simulation results show the performance of IT-SRAKE is better than that of the M-TRPC by 3-9 dB.

A Joint Timing Synchronization, Channel Estimation, and SFD Detection for IR-UWB Systems

  • Kwon, Soonkoo;Lee, Seongjoo;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.501-509
    • /
    • 2012
  • This paper proposes a joint timing synchronization, channel estimation, and data detection for the impulse radio ultra-wideband systems. The proposed timing synchronizer consists of coarse and fine timing estimation. The synchronizer discovers synchronization points in two stages and performs adaptive threshold based on the maximum pulse averaging and maximum (MAX-PA) method for more precise synchronization. Then, iterative channel estimation is performed based on the discovered synchronization points, and data are detected using the selective rake (S-RAKE) detector employing maximal ratio combining. The proposed synchronizer produces two signals-the start signal for channel estimation and the start signal for start frame delimiter (SFD) detection that detects the packet synchronization signal. With the proposed synchronization, channel estimation, and SFD detection, an S-RAKE receiver with binary pulse position modulation binary phase-shift keying modulation was constructed. In addition, an IEEE 802.15.4a channel model was used for performance comparison. The comparison results show that the constructed receiver yields high performance close to perfect synchronization.

On the error rate of multicode-CDMA system in frequency selective fading channel (주파수 선택적 페이딩 채널에서 멀티코드 CDMA 시스템의 성능 분석)

  • 김연진;김남수;김민택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.932-939
    • /
    • 1998
  • In this paper, we analyze the performance of a multicode-CDMA system which have been proposed for the multimedia communications. The performance of a multicode-CDMA system, providing good spectrum efficiency as well as serving various bit rates, is analyzed with multipath, frequency selective, slowly fading Rayleigh channel. Also the proposed scheme adopting RAKE receiver with MRC(Maximal Ratio Combine) is advantageous to multipath channel. For a practical channel modeling, the JTC(Joint Technical Committee) recommended channel model(JTC(AIR) 23-065R6) is applied to simulation. The proposed schemehas serial-to-parallel convertor which splits input data stream of 2 Mits/s into 20 branches o 100 kbits/s. From the result of simulation, the case of RAKE receiver with 3 fingers to reduce the system complexity required the relatively large $E_{b}/N_O$ of 0 dB~1.5 dB, compared to the case of RAKE receiver with the number of path finger to keep the average error rate to be $1{\times}10^{-3}$ in channel A.

  • PDF

Improved Channel Estimation for Selective RAKE Receiver in LR-UWB System (저속 UWB 시스템에서 선택적 레이크 수신기를 위한 개선된 채널 추정 방법)

  • Kwon, Soon-Koo;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.138-144
    • /
    • 2009
  • This paper proposes an efficient scheme to estimate the channel parameters such as channel gain and delay for the IEEE802.15.4a LR-UWB systems. Sliding window (SW) method is generally used for the channel estimation of LR-UWB systems, which extracts the channel parameters by performing the cross-correlation with the repeatedly transmitted signal. However, the SW method experiences the severe performance degradation because the cross-correlation is performed just once for the received signal. In this paper, we propose a novel channel estimation scheme, which can achieve a great performance gain by performing the cross-correlation repeatedly with the repeated receive signal. In order to verify the performance gain of the proposed scheme, we performed the intensive simulation with the Saleh-Valenzuela channel model. Simulation results show that the proposed scheme has a performance improvement of 4dB compared to the conventional SW channel estimation scheme.

Performance of cellular CDMA systems using orthogonal spreading codes in rayleigh fading channels (레일레이 페이딩 채널에서 직교확산부호를 이용한 셀룰러 CDMA 시스팀의 성능)

  • 조현욱;조용석;박상규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.22-30
    • /
    • 1998
  • In this paper, we analyze CDMA systems using M-orthogonal spreading codes. We assume that each user one set of M-orthogonal spreading codes allocated randomaly. The effect of multiple access interference from the reference and adjacent cells is considered slowly frequency selective rayleigh fading channels. and the adjacent cells interference is considered toanalyze the system performance. We calculate bit error rate and the maximum number of users whoe can communicate simulaneously within a cell by suing Rake receiver. By comparing CDMA systemwhich transmits 1 bit/spreding code, our system shows bit error rate decreases as M increases under the same bandwidth and infromation rate.

  • PDF