• Title/Summary/Keyword: selective leaching.

Search Result 63, Processing Time 0.019 seconds

Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal (유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거)

  • Seo, Younggyo;Oh, Daemin;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.

Efficient Oxidative Scission of Alkenes or Alkynes with Heterogeneous Ruthenium Zirconia Catalyst (루테늄 지르코니아 불균일 촉매를 이용한 알켄 또는 알킨의 효과적인 산화절단반응)

  • Irshad, Mobina;Choi, Bong Gill;Kang, Onyu;Hong, Seok Bok;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.659-663
    • /
    • 2016
  • The efficiency of a heterogeneous ruthenium zirconia catalyst ($Ru(OH)_x/ZrO_2$) was demonstrated to the selective oxidative transformation of alkenes or alkynes. The scissions of C-C double bonds to aldehydes and triple bonds to diketones or carboxylic acids were carried out with (diacetoxyiodo)benzene as an oxidant under dichloromethane (5 mL)/water (0.5 mL) solvent system at $30^{\circ}C$ for wide range of substrates. The $Ru(OH)_x/ZrO_2$composite showed higher catalytic activity and selectivity than other ruthenium-based homogeneous or heterogeneous catalysts for the scission reaction. The catalyst exhibited a high mechanical stability, and no leaching of the metal was observed during the reaction. These features ensured the reusability of the catalyst for several times for the oxidative cleavage of unsaturated hydrocarbons.

Triboelectrostatic Recovery of High Zinc-Containing Particulate contents from Steel-Making Process Dust (전기로 제강분진 중 고아연함량입자 성분의 마찰대전분리 회수)

  • Chang Hyun-Joo;Kim Dong-Su;Kim Hang-Goo;Cho Min-Yaung;Namkung Won
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2004
  • The amount of electric furnace dust has been steadily increasing due to the increase of iron scraps which are usually recycled by electric furnace melting process. To date, this electric furnace dust has usually been treated by landfilling, however, because of shortage of landfill sites and heavy metal leaching more desirable treatment schemes are urgently needed. Among several possible schemes for the proper treatment of electric furnace dust, its recycling can be said to be most desirable. In present study, the triboelectrostatic separation of zinc and zinc-containing components from electric furnace dust was attempted based on its physicochemical properties such as particle shape, size distribution, and chemical assay. The dust was found to be mixed with spherical and non-spherical shaped particles and its major component materials were $ZnFe_2$$O_4$, ZnO, Fe, Zn, and FeO. The content of zinc-containing components in the entire dust was observed to be in the range of 15~30 wt%, which reasonably justified that zinc is recyclable. The triboelectrostatic characteristic of each component material was found to be different each other since their work functions were different, and based on this characteristic zinc and zinc-containing component could be flirty separated from the dust. After selecting a proper tribo-elec-trification material, the separation features of zinc and zinc-containing component were examined by taking the distance of electrodes, electric field strength, and scavenging as the experimental variables. The highest zinc-content obtained under the optimal separating condition was found to be up to 50wt%.