• Title/Summary/Keyword: selective fungicidal activity

Search Result 11, Processing Time 0.024 seconds

CoMFA and CoMSIA Analysis on the Selective Fungicidal Activity of N-phenyl-D-phenylthionocarbamate Analogues against Resistant and Sensitive Gray Mold (Botrytis cinerea) (저항성 및 감수성 잿빛곰팡이병균(Botrytis cinerea)에 대한 N-Phenyl-O-phenylthionocarbamate 유도체들의 선택적인 살균활성에 관한 CoMFA 및 CoMSIA 분석)

  • Soung, Min-Gyu;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.138-143
    • /
    • 2007
  • The relationships between three dimensional quantitative structure and activity relationships (3D-QSARs) for the selective fungicidal function between N-phenyl substituents of N-phenyl-O-phenyl-thionocarbamate derivatives analogues and their the fungicidal activities against resistant (RBC) and sensitive (SBC) gray mold (Botrytis cinerea) were studied quantitatively using CoMFA and CoMSIA methods. The statistical values of optimized CoMSIA (M7) model were better ($r^2$ & $q^2=CoMSIA{\gg}CoMFA$) than that of CoMFA (M5) model. And the factor influencing of the selective between the fungicidal activity against RBC and SBC was dependent on electrostatic field of CoMFA (M5) model. Therefore, it is predicted that, from the CoMSIA contour maps of CoMSIA (M7) model, the selectivity will be improved by the H-bond donor that is with negatively charged favored group at meta-position on the N-phenyl ring.

Selective Combination Effect of Anethole to the Antifungal Activities of Miconazole and Amphotericin B (Miconazole과 Amphotericin B의 항진균 활성에 대한 Anethole의 선택적 병용 효과)

  • 이상화;김창진
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.228-232
    • /
    • 1999
  • The combination effect of anethole with amphotericin B, fluconazole, miconazole, or 5-fluorocytosine was investigated against Saccharomyces cerevisiae. When combined with $\frac{1}{2}$ minimum inhibitory concentration (MIC) or $\frac{1}{2}$ minimum fungicidal concentration (MFC) of anethole, the antifungal activities of fluconazole and 5-fluorocytosine were not changed, but the fungistatic and the fungicidal activities of miconazole were increased 64-fold, respectively. In the case of amphotericin B, the fungistatic activity was increased 2-fold, while the fungicidal activity was decreased 2-fold. The combination effect of anethole with miconazole or amphotericin B was also investigated at the various concentrations using the macrobroth dilution checkerboard method. The fractional inhibitory concentration (FIC) and the fractional fungicidal concentration (FFC) index between B exhibited the FIC index of 8.25 and the FFC of 32.06, respectively. Thus, it is analyzed that the combination of anethole with miconazole or amphotericin B on the antifungal action shows synergism and antagonism, respectively.

  • PDF

Influence of substituted phenoxy group on the fungicidal activities of 2-N-benzyl-5-phenoxy-3-isothiazolone derivatives (2-N-benzyl-5-phenoxy-3-isothiazolone 유도체의 살균활성에 미치는 치환-phenoxy기의 영향)

  • Sung, Nack-Do;Kim, Ki-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.36-40
    • /
    • 2001
  • A series of new 2-N-benzyl-5-phenoxy-3-isothiazolone derivatives were synthesized and their in vitro antifungal activities against resistant Phytophthora capsici (RPC) & sensitive Phytophthora capsici (SPC) with metalaxyl fungicide have been measured. In addition, influence of substituted 5-phenoxy group on the -antifungal activities ($pI_{50}$) and the reactivity of substrates were investigated. From the results, reactivity of none substituted substrate showed tendency displaying orbital-controlled reaction. The substituents on the 5-phenoxy ring showed selective fungicidal activity between SPC and RPC. Especially, the 4-fluoro substituent, 6 in the RPC and 4-nitro substituent, 3 in SPC exhibited strongly selective antifungal activity among them. The activities on the SPC would depend largely on the optimal molar refractivity ($MR_{(opt.)}=7.37cm^3/mol$) whereas the activities on the RPC would depend largely on the optimal highest occupied molecular orbital energy ($HOMO_{(opt.)}=-9.2137e.v.$) and weak electron donating (${\sigma}<0$) group. And Free-Wilson analyses revealed that the antifungal activity against RPC depends on the methoxy and bromo-substituent and all of the substituents contribute to antifungal activities against SPC.

  • PDF

Molecular Holographic Quantitative Structure-Activity Relationship (HQSAR) for the Fungicidal Activities of New Novel 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one Derivatives (새로운 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one 유도체들의 살균활성에 관한 분자 홀로그래피적인 정량적 구조와 활성과의 관계)

  • Sung, Nack-Do;Yoon, Tae-Yong;Jung, Hoon-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.2
    • /
    • pp.146-152
    • /
    • 2005
  • The fungicidal activities against resistance phytophthora blight (RPC; 95CC7303) and sensitive phytophthora blight (Phytopthora capsici) (SPC; 95CC7105) by new 2-alkoxyphenyl-3-phenylthioisoindoline-1-one derivatives (A & B) were studied using molecular holographic quantitative structure activity relationships (HQSAR) methodology. Based on the results, the statistical results of the two best HQSAR models, RI-B for RPC and SII-A for SPC exhibited the best predictability and fitness for the fungicidal activities based on the cross-validated value ($q^2=0.806{\sim}0.865$) and non cross-validated value ($r^2_{ncv.}=0.921{\sim}0.952$, respectively. The quality of the model for SPC was slightly than that of RPC. From the based graphical analyses of atomic contribution maps, it was confirmed that the novel selective character for fungicidal activities against RPC depends upon the 2-fluoro-4-chloro-5-alkoxyanilino group.

Comparative Molecular Field Analyses on the Fungicidal Activities of N-phenylthionocarbamate Derivatives based on Different Alignment Approaches (상이한 정렬에 따른 N-phenylthionocarbamate 유도체들의 살균활성에 관한 비교 분자장 분석)

  • Sung, Nack-Do;Soung, Min-Gyu;You, Jae-Won;Jang, Seok-Chan
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.157-164
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) for the fungicidal activities against Rhizoctonia solani (RS) and Phytophthora capsici (PC) by N-phenyl substituents(X) of N-phenylthionocarbamate derivatives were studied quantitatively using comparative molecular field analysis (CoMFA) methodology based on different alignment approaches. Statistical quality of CoMFA models with field fit alignment were slightly higher than that of atom based fit alignment. The optimized CoMFA models (RS: RF2 & PC: PF2) were derived from field fit alignment and combination of CoMFA fields. And the statistical results of the two models showed the best predictability of the fungicidal activities based on the cross-validated value $q^2$ ($r^2_{cv.}$ =RS: 0.557 & PC: 0.676) and non-cross-validated value ($r^2_{ncv.}$ =RS: 0.954 & PC: 0.968), respectively. The selective fungicidal activities between two fungi were dependence upon the electrostatic field of substrate molecule. Therefore, the fungicidal activities from CoMFA contour maps showed that the fungicidal activity will be able to increased according to the modification of X-substituents on the substrate molecules.

Comparative molecular similarity indices analyses (CoMSIA) and hologram quantitative structure activity relationship (HQSAR) on the fungicial activity of 2-N-benzyl-5-phenoxy-3-isothiazolone derivatives against phytophthora blight fungus (고추역병균에 대한 2-N-benzyl-5-Phenoxy-3-isothiazolone 유도체의 살균활성에 관한 비교분자 유사성 지수분석(CoMSIA)과 홀로그램 구조-활성 관계(HQSAR))

  • Sung, Nack-Do;Kim, Ki-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.3
    • /
    • pp.209-217
    • /
    • 2002
  • Two different QSAR methods, the comparative molecular similarity indices analyses (CoMSIA) and hologram quantitative structure activity relationship (HQSAR) are studied for the fungicidal activities ($pI_{50}$) of 2-N-benzyl-5-phenoxy-3-isothiazolone derivatives against sensitive (SPC: 95CC7105) and resisitive (RPC: 95CC7303) phytophthora blight fungus (Phytaphthora capsici). According to the findings from these QSAR investigation, the cross-validation value, $q^2$ and Pearson correlation coefficient, $r^2$ in the two methods were CoMSIA: RPC; $q^2=0.675,\;r^2=0.942$, SPC; $q^2=0.350,\;r^2=0.876$ and HQSAR: RPC; $q^2=0.519,\;r^2=0.869$, SPC; $q^2=0.483,\;r^2=0.990$, respectively. Therefore, the two models of comparative statistical significance were obtained. From the CoMSIA contour maps, the important factors for selective fungicidal activity against RPC are to be expected that the lower hydrophobic and not bulkiness substituent as hydrogen bonding acceptor have to introduce to meta and para-position (C1-C6) on the phenoxy moiety. And the results of prediction suggest that HQSAR method showed higher fungicidal activity than CoMSIA method.

Biological activity of Ethaboxam: the first Korean fungicide

  • Kim, Dal-Soo;Chun, Sam-Jae
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.36-38
    • /
    • 2004
  • Ethaboxam is a new fungicidal active ingredient that inhibits growth of plant pathogens specifically belonging to Oomycetes with protective, curative, systemic and translaminar activity in plants. Modes of action studies revealed that ethaboxam simultaneously inhibits cytoskeleton formation and mitochondrial respiration of Phytophthora infestans at low concentrations. There have been no indications of resistance development when tested for baseline resistance monitoring to 261 isolates of P. infestans in Korea and Europe and 150 populations of Plasmopara viticola populations in Europe for 3 years since 2000. In a selective study with vine trees artificially inoculated with P. viticola repeatedly for 10 generations in greenhouse, there have been no changes in sensitivity to ethaboxam among four natural populations of P. viticola. Furthermore, ethamoxam has not shown any cross resistance with azoxystrobin, mefenoxam, dimethomorph and cymoxanil. Based on the study results from modes of action and resistance development, ethaboxam appears to be unlikely to develop resistance in field applications.

  • PDF

Three Dimensional Quantitative Structure-Activity Relationship Analyses on the Fungicidal Activities of New Novel 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one Derivatives Using the Comparative Molecular Similarity Indices Analyses (CoMSIA) Methodology Based on the Different Alignment Approaches (상이한 정렬에 따른 비교분자 유사성 지수분석(CoMSIA) 방법을 이용한 새로운 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one 유도체들의 살균활성에 관한 3차원적인 정량적 구조와 활성과의 관계)

  • Sung, Nack-Do;Yoon, Tae-Yong;Song, Jong-Hwan;Jung, Hoon-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.26-34
    • /
    • 2005
  • 3D-QSAR studies for the fungicidal activities against resistance phytophthora blight (RPC; 95CC7303) and sensitive phytophthora blight (Phytopthora capsici) (SPC; 95CC7105) by a series of new 2-alkoxyphenyl-3-phenylthioisoindoline-1-one derivatives (A & B) were studieded using comparative molecular similarity indices analyses (CoMSIA) methodology. From the based on the results, the two CoMSIA models, R5 and S1: as the best models were derivated. The statistical results of the models showed the best predictability and fitness for the fungicidal activities based on the cross- validated value ($q^2=0.714{\sim}0.823$) and non cross-validated, value ($r^2_{ncv.}=0.918{\sim}0.954$), respectively. The model R5 for fungicidal activity of RPC generated from the field fit alignment and combination of electrostatic field, H-bond acceptor field and LUMO molecular orbital field. The model S1 (or S5) for fungicidal activity of SPC generated from the atom based fit alignment and combination of steric field and HOMO molecular orbital field. The models also shows that inclusion of H-bond acceptor field (A) improved the statistical significance of the models. From the based graphical analyses of CoMSIA contribution maps, it was revealed that the novel selective character for fungicidal activities between the two fungi by modify of X-sub-stituent on the N-phenyl group and R-substituent on the S-phenyl group will be able to achivement.

Construction of a Focused Library of 2-benzylimino-1,3-thiazolines and Their Fungicidal Activities (2-벤질이미노-1,3-티아졸린 유도체의 집중 라이브러리의 구축 및 이들의 살균활성)

  • Park, Ik-Kyu;Lim, Chul-Soo;Nam, Kee-Dal;Shin, Dong-Yoon;Choi, Kyung-Ja;Cho, Kwang-Yun;Hahn, Hoh-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.149-152
    • /
    • 2006
  • Construction of focused library of 2-benzylimino-1,3-thiazolines 7 through molecular modification of 3-alkyl-2-phenylimino-1,3-thiazolines 1 which showed selective fungicidal activity against rice blast and their fungitoxic activity against 6 kinds of typical plant diseases was described. Fifty four compounds of focused library of 2-benzylimino-1,3-thiazolines 7 were synthesized from the reaction of the corresponding $\gamma$-chloroacetoacetanilides 6 with N-benzyl thioureas 5 by parallel synthetic methodology. As results of fungicidal screening against the typical plant diseases, twenty eight kinds of 7 at 100 ${\mu}g$ $mL^{-1}$ showed the control value over 50% against tomato late blight.

Three Dimensional Quantitative Structure-Activity Relationship on the Fungicidal Activities of New Novel 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one Derivatives Using the Comparative Molecular Field Analyses (CoMFA) Methodology Based on the Different Alignment Approaches (상이한 정렬에 따른 비교 분자장 분석(CoMFA) 방법을 이용한 새로운 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one 유도체들의 살균활성에 관한 3차원적인 정량적 구조와 활성과의 관계)

  • Sung, Nack-Do;Yoon, Tae-Yong;Song, Jong-Hwan;Jung, Hoon-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • 3D QSAR studies for the fungicidal activities against resistive phytophthora blight (RPC; 95CC7303) and sensitive phytophthora blight (Phytopthora capsici) (SPC; 95CC7105) by a series of new 2-alkoxyphenyl-3-phenylthioisoindoline-1-one derivatives (X: A=propynyl & B=2-chloropropenyl) were studied using comparative molecular field analyses (CoMFA) methodology. The CoMFA models were generated from the two different alignment, atom based fit (AF) alignment and field fit (FF) alignment. The atom based alignment exhibited a higher statistical results than that of field fit alignment. The best models, A3 and A7 using combination fields of H-bond field, standard field, LUMO and HOMO molecular orbital field as additional descriptors were selected to improve the statistic of the present CoMFA models. The statistical results of the two models showed the best predictability of the fungicidal activities based on the cross-validated value $q^2\;(r^2_{cv.}=RPC:\;0.625\;&\;SPC:\;0.834)$, non cross-validated value $(r^2_{ncv.}=RPC:\;0.894\;&\;SPC:\;0.915)$ and PRESS value (RPC: 0.105 & SPC: 0.103), respectively. Based on the findings, the predictive ability and fitness of the model for SPC was better than that of the model for RPC. The fugicidal activities exhibited a strong correlation with steric $(66.8{\sim}82.8%)$, electrostatic $(10.3{\sim}4.6%)$ and molecular orbital field (SPC: HOMO, 12.6% and RPC: LUMO, 22.9%) factors of the molecules. The novel selective character for fungicidal activity between two fungi depend on the positive charge of ortho, meta-positions on the N-phenyl ring and size of hydrophilicity of a substituents on the S-phenyl ring.