• Title/Summary/Keyword: selective encryption

Search Result 46, Processing Time 0.024 seconds

A Study on Selective Encryption of Huffman Codes (허프만 코드의 선택적 암호화에 관한 연구)

  • Park, Sang-Ho
    • Convergence Security Journal
    • /
    • v.7 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • The security of data in network is provided by encryption. Selective encryption is a recent approach to reduce the computational cost and complexity for large file size data such as image and video. This paper describes techniques to encrypt Huffman code and discusses the performance of proposed scheme. We propose a simple encryption technique applicable to the Huffman code and study effectiveness of encryption against insecure channel. Our scheme combine encryption process and compression process, and it can reduce processing time for encryption and compression by combining two processes.

  • PDF

Selective Encryption of Canonical Huffman code (정규 허프만 코드의 선택적 암호화)

  • Park, Sang-ho
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1163-1167
    • /
    • 2018
  • The selective encryption scheme for canonical Huffman codes using the inversion of bit values is proposed. The symbols are divided into blocks of a certain size, and each symbol in the block is compressed by canonical Huffman coding. Blocks are determined to be sent in the original code or encrypted form. The encryption block inverts the values of the whole bits, and bits of block that do not encrypt are not inverted. Those compressed data are transmitted with the encryption information. It is possible to decrypt the compressed data on the receiving side using the encryption information and compressed data.

Selective Encryption and Decryption Method for IVC Codec (IVC 코덱을 위한 선택적 암호화 및 복호화 방법)

  • Lee, Min Ku;Kim, Kyu-Tae;Jang, Euee S.
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.1013-1016
    • /
    • 2020
  • This paper presents a selective encryption and decryption method exploiting the start code of the IVC bitstream. The existing encryption methods for video are largely classified into two methods: Naive Encryption Algorithm (NEA) and Selective Encryption Algorithm (SEA). Since NEA encrypts the entire bitstream, it has the advantage of high security but has the disadvantage of high computational complexity. SEA improves the encryption and decryption speed compared to NEA by encrypting a part of the bitstream, but there is a problem that security is relatively low. The proposed method improves the encryption and decryption speed and the security of the existing SEA by using the start code of the IVC bitstream. As a result of the experiment, the proposed method reduces the encryption speed by 96% and the decryption speed by 98% on average compared to the NEA.

The performance analysis of the selective element encryption method (선택적 요소 암호화 방식에 대한 성능 분석)

  • Yang, Xue;Kim, Ji-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.848-854
    • /
    • 2015
  • There are a lot of encryption methods to secure database proposed recently. Those encryption methods can protect the sensitive data of users effectively, but it deteriorates the search performance of database query. In this paper, we proposed the selective element encryption method in order to complement those drawbacks. In addition, we compared the performance of the proposed method with that of tuple level encryption method using the various queries. As a result, we found that the proposed method, which use the selective element encryption with bloom filter as a index, has better performance than the other encryption method.

Selective Encryption Algorithm for Vector Map using Geometric Objects in Frequency Domain

  • Pham, Ngoc-Giao;Kwon, Ki-Ryong;Lee, Suk-Hwan;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1312-1320
    • /
    • 2017
  • Recently, vector map data is developed and used in many domains widely. In the most cases, vector map data contains confidential information which must be kept away from unauthorized users. Moreover, the production process of vector maps is considerably complex and consumes a lot of money and human resources. Therefore, the secured storage and transmission are necessary to prevent the illegal copying and distribution from hacker. This paper presents a selective encryption algorithm using geometric objects in frequency domain for vector map data. In the proposed algorithm, polyline and polygon data in vector map is the target of the selective encryption process. Experimental results verified that proposed algorithm is effectively and adaptive the requirements of security.

Selective Encryption Scheme for Vector Map Data using Chaotic Map

  • Bang, N.V.;Moon, Kwang-Seok;Lim, Sanghun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.818-826
    • /
    • 2015
  • With the rapid interest in Geographic Information System (GIS) contents, a large volume of valuable GIS dataset has been distributed illegally by pirates, hackers, or unauthorized users. Therefore the problem focus on how to protect the copyright of GIS vector map data for storage and transmission. But GIS vector map data is very large and current data encryption techniques often encrypt all components of data. That means we have encrypted large amount of data lead to the long encrypting time and high complexity computation. This paper presents the selective encryption scheme using hybrid transform for GIS vector map data protection to store, transmit or distribute to authorized users. In proposed scheme, polylines and polygons in vector map are targets of selective encryption. We select the significant objects in polyline/polygon layer, and then they are encrypted by the key sets generated by using Chaotic map before changing them in DWT, DFT domain. Experimental results verified the proposed algorithm effectively and error in decryption is approximately zero.

DNA Sequences Compression using Repeat technique and Selective Encryption using modified Huffman's Technique

  • Syed Mahamud Hossein; Debashis De; Pradeep Kumar Das Mohapatra
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.85-104
    • /
    • 2024
  • The DNA (Deoxyribonucleic Acid) database size increases tremendously transmuting from millions to billions in a year. Ergo for storing, probing the DNA database requires efficient lossless compression and encryption algorithm for secure communication. The DNA short pattern repetitions are of paramount characteristics in biological sequences. This algorithm is predicated on probing exact reiterate, substring substitute by corresponding ASCII code and engender a Library file, as a result get cumulating of the data stream. In this technique the data is secured utilizing ASCII value and engendering Library file which acts as a signature. The security of information is the most challenging question with veneration to the communication perspective. The selective encryption method is used for security purpose, this technique is applied on compressed data or in the library file or in both files. The fractional part of a message is encrypted in the selective encryption method keeping the remaining part unchanged, this is very paramount with reference to selective encryption system. The Huffman's algorithm is applied in the output of the first phase reiterate technique, including transmuting the Huffman's tree level position and node position for encryption. The mass demand is the minimum storage requirement and computation cost. Time and space complexity of Repeat algorithm are O(N2) and O(N). Time and space complexity of Huffman algorithm are O(n log n) and O(n log n). The artificial data of equipollent length is additionally tested by this algorithm. This modified Huffman technique reduces the compression rate & ratio. The experimental result shows that only 58% to 100% encryption on actual file is done when above 99% modification is in actual file can be observed and compression rate is 1.97bits/base.

Selective Encryption Algorithm Using Hybrid Transform for GIS Vector Map

  • Van, Bang Nguyen;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.68-82
    • /
    • 2017
  • Nowadays, geographic information system (GIS) is developed and implemented in many areas. A huge volume of vector map data has been accessed unlawfully by hackers, pirates, or unauthorized users. For this reason, we need the methods that help to protect GIS data for storage, multimedia applications, and transmission. In our paper, a selective encryption method is presented based on vertex randomization and hybrid transform in the GIS vector map. In the proposed algorithm, polylines and polygons are focused as the targets for encryption. Objects are classified in each layer, and all coordinates of the significant objects are encrypted by the key sets generated by using chaotic map before changing them in DWT, DFT domain. Experimental results verify the high efficiency visualization by low complexity, high security performance by random processes.

Selective Encryption Algorithm Based on DCT for GIS Vector Map

  • Giao, Pham Ngoc;Kwon, Gi-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.769-777
    • /
    • 2014
  • With the rapid interest in Geographic Information System (GIS) contents, a large volume of valuable GIS dataset has been distributed illegally by pirates, hackers, or unauthorized users. Therefore the problem focus on how to protect the copyright of GIS vector map data for storage and transmission. At this point, GIS security techniques focusing on secure network and data encryption have been studied and developed to solve the copyright protection and illegal copy prevention for GIS digital map. But GIS vector map data is very large and current data encryption techniques often encrypt all components of data. That means we have encrypted large amount of data lead to the long encrypting time and high complexity computation. This paper presents a novel selective encryption scheme for GIS vector map data protection to store, transmit or distribute to authorized users using K-means algorithm. The proposed algorithm only encrypts a small part of data based on properties of polylines and polygons in GIS vector map but it can change whole data of GIS vector map. Experimental results verified the proposed algorithm effectively and error in decryption is approximately zero.

Improvement of Image Scrambling Scheme Using DPSS(Discrete Prolate Spheroidal Sequence) and Digital Watermarking Application (DPSS(Discrete Prolate Spheroidal Sequence)를 이용한 영상 스크램블링 방식의 개선 및 디지털 워터마킹 응용)

  • Lee, Hye-Joo;Nam, Je-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1417-1426
    • /
    • 2007
  • As one of schemes to protect multimedia content. it is the selective encryption scheme to encrypt partially multimedia content. Compared AES(advanced encryption standard) of traditional encryption, the selective encryption scheme provides low security but is applicable to applications of multimedia content not to require high secrecy. In this paper, we improve the image scrambling scheme proposed by Van De Ville which scrambles an image without bandwidth expansion using DPSS(discrete prolate spheroidal sequence) to make it more secure based on Shujun's research which verifies the secrecy of Van De Ville's scheme. The proposed method utilizes an orthonormalized random matrix instead of Hadamard matrix for secret matrix and to add it for providing high secrecy against statistical attack or known-plaintext attack using some statistical property or estimate of secret matrix from a scrambled image. The experimental results show that the proposed method is more secure than the existing scheme. In addition, we show that the proposed method can be applied to access control or copy control of watermarking application.

  • PDF