• Title/Summary/Keyword: selective detection

Search Result 580, Processing Time 0.024 seconds

Implant Anneal Process for Activating Ion Implanted Regions in SiC Epitaxial Layers

  • Saddow, S.E.;Kumer, V.;Isaacs-Smith, T.;Williams, J.;Hsieh, A.J.;Graves, M.;Wolan, J.T.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • The mechanical strength of silicon carbide dose nor permit the use of diffusion as a means to achieve selective doping as required by most electronic devices. While epitaxial layers may be doped during growth, ion implantation is needed to define such regions as drain and source wells, junction isolation regions, and so on. Ion activation without an annealing cap results in serious crystal damage as these activation processes must be carried out at temperatures on the order of 1600$^{\circ}C$. Ion implanted silicon carbide that is annealed in either a vacuum or argon environment usually results in a surface morphology that is highly irregular due to the out diffusion of Si atoms. We have developed and report a successful process of using silicon overpressure, provided by silane in a CAD reactor during the anneal, to prevent the destruction of the silicon carbide surface, This process has proved to be robust and has resulted in ion activation at a annealing temperature of 1600$^{\circ}C$ without degradation of the crystal surface as determined by AFM and RBS. In addition XPS was used to look at the surface and near surface chemical states for annealing temperatures of up to 1700$^{\circ}C$. The surface and near surface regions to approximately 6 nm in depth was observed to contain no free silicon or other impurities thus indicating that the process developed results in an atomically clean SiC surface and near surface region within the detection limits of the instrument(${\pm}$1 at %).

  • PDF

Selective Segmentation of 3-D Objects Using Surface Detection and Volume Growing (표면 검출과 볼륨 확장을 이용한 삼차원 물체의 선택 분할)

  • Bae, So-Young;Choi, Soo-Mi;Choi, Yoo-Joo;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.83-92
    • /
    • 2002
  • The segmentation of target objects from three dimensional volume images is an essential step for visualization and volume measurement. In this paper, we present a method to detect the surface of objects by improving the widely used levoy filtering for volume visualization. Using morphological operators we generate completely closed surfaces and selectively segment objects using the volume growing algorithm. The presented method was applied to 3-D artificial sphere images and angiocardiograms. We quantitatively compared this method with the conventional levoy filtering using artificial sphereimages, and the results showed that our method is better in the aspect of voxel errors. The results of visual comparison using angiocardiograms also showed that our method is more accurate. The presented method in this paper is very effective for segmentation of volume data because segmentation, visualization and measurement are frequently used together for 3-D image processing and they can be easily related in our method.

Development and Assessment of Specific and High Sensitivity Reverse Transcription Nested Polymerase Chain Reaction Method for the Detection of Aichivirus A Monitoring in Groundwater (지하수 중 Aichivirus A 모니터링을 위한 특이적 및 고감도 이중 역전사 중합효소연쇄반응 검출법 개발 및 평가)

  • Bae, Kyung Seon;Kim, Jin-Ho;Lee, Siwon;Lee, Jin-Young;You, Kyung-A
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.190-198
    • /
    • 2021
  • Human Aichivirus (Aichivirus A; AiV-A) is a positive-sense single-strand RNA non-enveloped virus that has been detected worldwide in various water environments including sewage, river, surface, and ground over the past decade. To develop a method with excellent sensitivity and specificity for AiV-A diagnosis from water environments such as groundwater, a combination capable of reverse transcription (RT)-nested polymerase chain reaction (PCR) was developed based on existing reported and newly designed primers. A selective method was applied to evaluate domestic drinking groundwater samples. Thus, a procedure was devised to select and subsequently identify RT-nested PCR primer sets that can successfully detect and identify AiV-A from groundwater samples. The findings will contribute to developing a better monitoring system to detect AiV-A contamination in water environments such as groundwater.

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation

  • Farh, Mohamed El-Agamy;Han, Jeong A.;Kim, Yeon-Ju;Kim, Jae Chun;Singh, Priyanka;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Background: Korean ginseng is an important cash crop in Asian countries. However, plant yield is reduced by pathogens. Among the Ilyonectria radicicola-species complex, I. mors-panacis is responsible for root-rot and replant failure of ginseng in Asia. The development of new methods to reveal the existence of the pathogen before cultivation is started is essential. Therefore, a quantitative real-time polymerase chain reaction method was developed to detect and quantify the pathogen in ginseng soils. Methods: In this study, a species-specific histone H3 primer set was developed for the quantification of I. mors-panacis. The primer set was used on DNA from other microbes to evaluate its sensitivity and selectivity for I. mors-panacis DNA. Sterilized soil samples artificially infected with the pathogen at different concentrations were used to evaluate the ability of the primer set to detect the pathogen population in the soil DNA. Finally, the pathogen was quantified in many natural soil samples. Results: The designed primer set was found to be sensitive and selective for I. mors-panacis DNA. In artificially infected sterilized soil samples, using quantitative real-time polymerase chain reaction the estimated amount of template was positively correlated with the pathogen concentration in soil samples ($R^2=0.95$), disease severity index ($R^2=0.99$), and colony-forming units ($R^2=0.87$). In natural soils, the pathogen was recorded in most fields producing bad yields at a range of $5.82{\pm}2.35pg/g$ to $892.34{\pm}103.70pg/g$ of soil. Conclusion: According to these results, the proposed primer set is applicable for estimating soil quality before ginseng cultivation. This will contribute to disease management and crop protection in the future.

Upper Endoscopy up to 3 Years Prior to a Diagnosis of Gastric Cancer Is Associated With Lower Stage of Disease in a USA Multiethnic Urban Population, a Retrospective Study

  • Shah, Shailja C.;Nakata, Chiaki;Polydorides, Alexandros D.;Peek, Richard M. Jr;Itzkowitz, Steven H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.3
    • /
    • pp.179-187
    • /
    • 2019
  • Objectives: In the USA, certain races and ethnicities have a disproportionately higher gastric cancer burden. Selective screening might allow for earlier detection and curative resection. Among a USA-based multiracial and ethnic cohort diagnosed with non-cardia gastric cancer (NCGC), we aimed to identify factors associated with curable stage disease at diagnosis. Methods: We retrospectively identified endoscopically diagnosed and histologically confirmed cases of NCGC at Mount Sinai Hospital in New York City. Demographic, clinical, endoscopic and histologic factors, as well as grade/stage of NCGC at diagnosis were documented. The primary outcome was the frequency of curable-stage NCGC (stage 0-1a) at diagnosis in patients with versus without an endoscopy negative for malignancy prior to their index exam diagnosing NCGC. Additional factors associated with curable-stage disease at diagnosis were determined. Results: A total of 103 racially and ethnically diverse patients were included. Nearly 38% of NCGC were stage 0-Ia, 34% stage Ib-III, and 20.3% stage IV at diagnosis. A significantly higher frequency of NCGC was diagnosed in curable stages among patients who had undergone an endoscopy that was negative for malignancy prior to their index endoscopy that diagnosed NCGC, compared to patients without a negative endoscopy prior to their index exam (69.6% vs. 28.6%, p=0.003). A prior negative endoscopy was associated with 94.0% higher likelihood of diagnosing curable-stage NCGC (p=0.003). No other factors analyzed were associated with curablestage NCGC at diagnosis. Conclusions: Endoscopic screening and surveillance in select high-risk populations might increase diagnoses of curable-stage NCGC. These findings warrant confirmation in larger, prospective studies.

Study on the Implementation of Primitive Visual Cortex Model in Retina Using Gabor Wavelet (가버 웨이블릿을 이용한 원시 시각 피질 모델 구현에 관한 연구)

  • Lee, Youngseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.477-482
    • /
    • 2020
  • The human visual cortex has the characteristic that reacts sensitively to stimuli with special directional or temporal frequency changes while it is insensitive to selective stimuli of spatial phases. In this paper we implemented the model of complex cell using an image estimation iterative algorithm by Gabor wavelet transform. The performance of implemented model evaluated the consistency between the physiological experimental results in related papers. The implemented model is limited in the complete model of the receptive field in the retina where simple cells and complex cells are distributed together. But the implemented model express the reaction of the complex cells from the point of view of the detection of corners and edges.

Fabrication of Potentiometric Sodium-ion Sensor Based on Carbon and Silver Inks and its Electrochemical Characteristics (탄소 및 은 잉크 기반의 전위차 나트륨 이온 센서 제조 및 이의 전기화학적 특성)

  • Kim, Seo Jin;Son, Seon Gyu;Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.456-460
    • /
    • 2021
  • A potentiometric sodium-ion (Na+) sensor was prepared using a screen-printing process with carbon and silver inks. The two-electrode configuration of the sensor resulted in potential differences in Na+ solutions according to Nernstian equation. The obtained Na+-sensor exhibited an ideal Nernstian sensitivity, fast response time, and low limit of detection. The Nernstian response was stable when the sensor was tested for repeatability and long-term durability. The Na+-selective membrane coated onto the carbon electrode selectively passed sodium ions against interfering ions, indicating an excellent selectivity. The portable Na+-sensor was finally fabricated using a printed circuit system, demonstrating the successful measurements of Na+ concentrations in various real samples.

Protective effect of Buddha's Temple extract against tert-butyl hydroperoxide stimulation-induced oxidative stress in DF-1 cells

  • Eun Hye Park;Sung-Jo Kim
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1120-1129
    • /
    • 2023
  • Objective: This study aimed to determine the protective efficacy of Buddha's Temple (BT) extract against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in Gallus gallus chicken embryo fibroblast cell line (DF-1) and its effects on the cell lipid metabolism. Methods: In this experimental study, Gallus gallus DF-1 fibroblast cells were pretreated with BT 10-7 for 24 hours, followed by their six-hour exposure to t-BHP (100 μM). Water-soluble tetrazolium salt-8 (WST-8) assays were performed, and the growth curve was computed. The intracellular gene expression changes caused by BT extract were confirmed through quantitative polymerase chain reaction (qPCR). Flow cytometry, oil red O staining experiment, and thin-layer chromatography were performed for the detection of intracellular metabolic mechanism changes. Results: The WST-8 assay results showed that the BT pretreatment of Gallus gallus DF-1 fibroblast cell increased their cell survival rate by 1.08%±0.04%, decreased the reactive oxygen species (ROS) level by 0.93%±0.12% even after exposure to oxidants, and stabilized mitochondrial activity by 1.37%±0.36%. In addition, qPCR results confirmed that the gene expression levels of tumor necrosis factor α (TNFα), TIR domain-containing adapter inducing IFN-beta (TICAM1), and glucose-regulated protein 78 (GRP78) were regulated, which contributed to cell stabilization. Thin-layer chromatography and oil red O analyses showed a clear decrease in the contents of lipid metabolites such as triacylglycerol and free fatty acids. Conclusion: In this study, we confirmed that the examined BT extract exerted selective protective effects on Gallus gallus DF-1 fibroblast cells against cell damage caused by t-BHP, which is a strong oxidative inducer. Furthermore, we established that this extract significantly reduced the intracellular ROS accumulation due to oxidative stress, which contributes to an increase in poultry production and higher incomes.

Highly catalysis Zinc MOF-loaded nanogold coupled with aptamer to assay trace carbendazim by SERS

  • Jinling Shi;Jingjing Li;Aihui Liang;Zhiliang Jiang
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.313-327
    • /
    • 2023
  • Zinc metal organic framework (MOFZn)-loaded goad nanoparticles (AuNPs) sol (Au@MOFZn), which was characterized by TEM, Mapping, FTIR, XRD, and molecular spectrum, was prepared conveniently by solvothermal method. The results indicated that Au@MOFZn had a very strong catalytic effect with the nanoreaction of AuNPs formation between sodium oxalate (SO) and HAuCl4. AuNPs in the new indicator reaction had a strong resonance Rayleigh scattering (RRS) signal at 370 nm. The indicator AuNPs generated by this reaction, which had the most intense surface enhanced Raman scattering (SERS) peak at 1621 cm -1. The new SERS/RRS indicator reaction in combination with specific aptamer (Apt) to fabricate a sensitive and selective Au@MOFZn catalytic amplification-aptamer SERS/RRS assay platform for carbendazim (CBZ), with SERS/RRS linear range of 0.025-0.5 ng/mL. The detection limit was 0.02 ng/mL. Similarly, this assay platform has been also utilized to detect oxytetracycline (OTC) and profenofos (PF).