• Title/Summary/Keyword: selective detection

Search Result 574, Processing Time 0.031 seconds

A New Chemosensing Ensemble for Colorimetric Detection of Oxalate in Water

  • Tang, Li-Jun;Liu, Ming-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3159-3162
    • /
    • 2010
  • To realize highly selective recognition of oxalate in water, a new chemosensing ensemble that behaves highly selective colorimetric recognition of oxalate in water at pH 7.4 has been developed. The ensemble was constructed by a pyrrole containing mononuclear copper complex and chromeazurol S. The ensemble shows a highly selective recognition of oxalate through an obvious color change from blue to yellow upon the addition of oxalate, whereas, other dicarboxylates such as malonate, succinate, fumarate, maleate, glutarate, adipate, phthalate, isophthalate and terephthalate do not induce any noticeable color changes. The oxalate recognition process is not significantly affected by other coexisting dicarboxylate.

Blind MOE-PIC Multiuser Detector for Multicarrier DS-CDMA Systems (다중 반송파 DS-CDMA 시스템을 위한 블라인드 MOE-PIC 다중사용자 검출기)

  • Woo Dae ho;Lee Seung yong;Byun Youn shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.153-157
    • /
    • 2005
  • Frequency selective fading occurs due to the Doppler Effect in mobile communication systems. The performances of the systems are rapidly reduced due to effect of multiuser interference under frequency selective channels at DS-CDMA systems. To overcome these problems, we adopted the multi-carrier modulation techniques, and it is able to solve the frequency selective channel effects by means of these modulation techniques, and interference problems due to multiuser access are solved by means of multiuser detection techniques. In this paper, we proposed the blind MOE/PIC multiuser detection method which is composed of both the blind multiuser detection technique and parallel interference canceller. Thus, simulation results show that the proposed method performs better than conventional methods.

Impurity Profiling and Quantification of Sudan III Dyes by HPLC-selective UV Detection

  • Yang, Ki Ryeol;Hong, Ji Yeon;Yoon, Soo Hwan;Hong, Jongki
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.765-769
    • /
    • 2014
  • An analytical methodology was developed for qualitative and quantitative impurity profiling of the coloring agent Sudan III by high-performance liquid chromatography (HPLC)-diode array detection (DAD). The impurities in commercial Sudan III were characterized by comparison of their retention times and UV spectra with those of authentic standards. Four impurities regulated by International Committees in Sudan III were quantified by HPLC-selective UV detection. The impurities in Sudan dye were successfully separated on a reversed phase C18-column within 25 min and sensitively detected by UV spectrometry at two selective wavelengths. Method validation was conducted to determine linearity, precision, accuracy, and limit of quantification (LOQ). The linear dynamic range extended from 0.002 to 4.0%, with a correlation coefficient (R2) greater than 0.995. The LOQs of the impurities ranged from 8.04 to $54.29{\mu}g/mg$. Based on the established method, the levels of regulated impurities in five commercial Sudan III dyes were determined.

Performance Analysis of MIMO Detection in Frequency Selective Rayleigh Fading Channels (주파수 선택적 Rayleigh 페이딩 채널에서의 MIMO 검출 성능 연구)

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.974-979
    • /
    • 2009
  • The BER performance of a MIMO detection scheme on frequency selective Rayleigh fading channels is analytically discussed. The presented MIMO detection scheme consists of temporal and spatial combiners followed by a ZF detector. It is shown that for a MIMO system with $N_T$ transmit antennas, $N_R$ receive antennas, and L resolvable multipath components, it achieves the diversity order of $LN_R-N_T+1$. In frequency selective Rayleigh fading channels, an analytical error rate expression of the systems is also provided and the analytical error performance is compared with the simulated results.

A New Change Detection Method Based on Macro Block Unit for Selective Video Coding (선택적 영상 부호화를 위한 매크로 블록단위의 변화영역 검출방법)

  • 최재각;권순각;이종극
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.172-180
    • /
    • 2003
  • This paper propose a new change detection algorithm based on macro block unit for selective video coding scheme. The conventional method badly decides a macro block of unchanged region into a changed macro block due to a noise of the difference images. To solve the problem of the conventional method, we propose a new test statistic which is robust to the noise of the difference image. As shown in experimental results(Fig. 1∼3), the proposed algorithm shows more accurate segmentation results than the conventional method. Also, because the proposed detection method reduces the average numbers of changed macro block per frame to 55∼60% than the conventional method, it can improve the performance of the selective video coding at lower bit rates.

Phosphorescent Azacrown Ether-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

  • Li, Yinan;Yoon, Ung-Chan;Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.122-126
    • /
    • 2011
  • A new phosphorescent cyclometalated heteroleptic iridium (III) complex with an ancillary ligand of 4-azacrownpicolinate was prepared and its metal ion selective phosphorescent chemosensing behavior was investigated. The new iridium (III) complex exhibits notable phosphorescence quenching for Hg2+ in aqueous 50% acetonitrile solution with respect to the selective phosphorescent detection of various metal ions including $Li^+,Na^+,K^+,Cs^+,Mg^{2+},Ca^{2+},Ba^{2+},Fe^{2+},Ni^{2+},Cu^{2+},Zn^{2+},Ag^+,Pb^{2+},Cd^{2+},Cr^{2+},Cr^{3+}$ and $Hg^{2+}$. The phosphorescence quenching for $Hg^{2+}$ increased linearly with increasing concentration of $Hg^{2+}$ in the range of $10{\mu}M-700{\mu}M$ even in the presence of other metal ions, except for $Cu^{2+}$. Consequently, the new iridium (III) complex has the potential to be utilized for the determination of parts per million levels of $Hg^{2+}$ in aqueous acetonitrile media.

Suggestion for deep learning approach to solve the interference effect of ammonium ion on potassium ion-selective electrode

  • Kim, Min-Yeong;Heo, Jae-Yeong;Oh, Eun Hun;Lee, Joo-Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.156-163
    • /
    • 2022
  • An ammonium ion with a size and charge similar to that of potassium can bind to valinomycin, which is used as an ion carrier for potassium, and cause a meaningful interference effect on the detection of potassium ions. Currently, there are few ion sensors that correct the interference effect of ammonium ions, and there are few studies that specifically suggest the mechanism of the interference effect. By fabricating a SPCE-based potassium ion-selective electrode, the electromotive force was measured in the concentration range of potassium in the nutrient solution, and the linear range was measured to be 10-5 to 10-2 M, and the detection limit was 10-5.19 M. And the interference phenomenon of the potassium sensor was investigated in the concentration range of ammonium ions present in the nutrient solution. Therefore, a data-based analysis strategy using deep learning was presented as a method to minimize the interference effect.

Vegetation Indices for Selective Logging Detection in Tropical Forest of East Kalimantan

  • Bhandari, S.P.;Hussin, Y.A.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.289-291
    • /
    • 2003
  • Selective logging is currently a widely adopted management practice throughout the tropics. Monitoring of spatial extent and intensity of such logging is, therefore, becoming an important issue for sustainable management of forest. This study explores the possibility of using vegetation indices and Landsat 7 ETM+ image for this purpose. Two dataset acquired on 2002 and 2000 of Labanan concession area East Kalimantan, Indonesia were used. Three different vegetation indices (MSAVI, SAVI and NDVI) slicing and differentiating methods were tested. The results showed that the MSAVI is superior with overall accuracy of 77% and kappa 0.64.

  • PDF

A Lightweight Real-Time Small IR Target Detection Algorithm to Reduce Scale-Invariant Computational Overhead (스케일 불변적인 연산량 감소를 위한 경량 실시간 소형 적외선 표적 검출 알고리즘)

  • Ban, Jong-Hee;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.231-238
    • /
    • 2017
  • Detecting small infrared targets from the low-SCR images at a long distance is very hard. The previous Local Contrast Method (LCM) algorithm based on the human visual system shows a superior performance of detecting small targets by a background suppression technique through local contrast measure. However, its slow processing speed due to the heavy multi-scale processing overhead is not suitable to a variety of real-time applications. This paper presents a lightweight real-time small target detection algorithm, called by the Improved Selective Local Contrast Method (ISLCM), to reduce the scale-invariant computational overhead. The proposed ISLCM applies the improved local contrast measure to the predicted selective region so that it may have a comparable detection performance as the previous LCM while guaranteeing low scale-invariant computational load by exploiting both adaptive scale estimation and small target feature feasibility. Experimental results show that the proposed algorithm can reduce its computational overhead considerably while maintaining its detection performance compared with the previous LCM.

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • Choe, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF