• Title/Summary/Keyword: select method

Search Result 3,334, Processing Time 0.03 seconds

A Study on the Operation Plan of the Gangwon-do Disaster Management Resources Integrated Management Center (강원도 재난관리자원 통합관리센터 운영방안에 관한 연구)

  • Hang-Il Jo;Sang-Beom Park;Kye-Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • In Korea, as disasters become larger and more complex, there is a trend of shifting from a focus on response and recovery to a focus on prevention and preparedness. In order to prevent and prepare for disasters, each local government manages disaster management resources by stockpiling them. However, although disaster management resources are stored in individual warehouses, they are managed by department rather than by warehouse, resulting in insufficient management of disaster management resources due to the heavy workload of those in charge. In order to intensively manage these disaster management resources, an integrated disaster management resource management center is established and managed at the metropolitan/provincial level. In the case of Gangwon-do, the subject of this study, a warehouse is rented and operated as an integrated disaster management resource management center. When leasing an integrated management center, there is the inconvenience of having to move the location every 1 to 2 years, so it is deemed necessary to build a dedicated facility in an available site. To select a location candidate, network analysis was used to measure access to and use of facilities along interconnected routes of networks such as roads and railways. During network analysis, the Location-Allocation method, which was widely used in the past to determine the location of multiple facilities, was applied. As a result, Hoengseong-gun in Gangwon-do was identified as a suitable candidate site. In addition, if the integrated management center uses our country's logistics system to stockpile disaster management resources, local governments can mobilize disaster management resources in 3 days, and it is said that it takes 3 days to return to normal life after a disaster occurs. Each city's disaster management resource stockpile is 3 days' worth per week, and the integrated management center stores 3 times the maximum of the city's 4-day stockpile.

Analysis of the Reduction Effect of Combined Treatment with UV-C and Organic Acid to Reduce Aspergillus ochraceus and Rhodotorula mucilaginosa Contamination (Aspergillus ochraceus와 Rhodotorula mucilaginosa 저감을 위한 자외선과 유기산 복합처리 효과 분석)

  • Eun-Seon Lee;Jong-Hui Kim;Bu-Min Kim;Mi-Hwa Oh
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2024
  • This study investigated the effectiveness of using pathogens and aqueous acids to reduce the Aspergillus ochraceus and Rhodotorula mucilaginosa contamination in livestock production environments. For this study, 1 mL of each bacterial suspension (107-108 spores/mL) was inoculated on a knife surface, dried at 37℃, and used under each treatment condition. First, to investigate the effect of organic acids, acetic, lactic, and citric acids were used. Subsequently, to select the appropriate concentration, they were prepared at concentrations of 0.5, 1, 2, 3, 4, and 5%, respectively. Accordingly, to further maximize the effect of organic acid treatment, we combined the treatment with ultraviolet light. The two strains showed a significant difference (P<0.05) compared to the initial strain, with a greater than 90% decrease in the concentrations of all organic acids. Consequently, acetic and lactic acids decreased by approximately 5 and 2 log colony forming unit (CFU)/cm2, respectively, when treated with ultraviolet light (360 mJ/cm2); however, citric acid decreased by less than 1 log CFU/cm2. However, when manufactured with 4% acetic acid, a severe malodor was emitted, making it difficult for workers to use it in a production environment. Accordingly, the optimal treatment conditions for organic acid and ultraviolet light for application were selected as follows: immersion in a 4% lactic acid solution for 1 minute and then, sterilization with ultraviolet light at 360 mJ/cm2. Finally, when a pork meat sample was cut with a knife that was finally washed with lactic acid and treated with ultraviolet light, the low level of inoculum transferred from the cleaned knife to the surface of the sample was not detected. In conclusion, using this established method can prevent cross-contamination of the surface of the meat during processing.

Development of Kimchi Cabbage Growth Prediction Models Based on Image and Temperature Data (영상 및 기온 데이터 기반 배추 생육예측 모형 개발)

  • Min-Seo Kang;Jae-Sang Shim;Hye-Jin Lee;Hee-Ju Lee;Yoon-Ah Jang;Woo-Moon Lee;Sang-Gyu Lee;Seung-Hwan Wi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.366-376
    • /
    • 2023
  • This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the 'Cheongmyeong Gaual' variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37' N 128°32' E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.

Media Habits of Sensation Seekers (감지추구자적매체습관(感知追求者的媒体习惯))

  • Blakeney, Alisha;Findley, Casey;Self, Donald R.;Ingram, Rhea;Garrett, Tony
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • Understanding consumers' preferences and use of media types is imperative for marketing and advertising managers, especially in today's fragmented market. A clear understanding assists managers in making more effective selections of appropriate media outlets, yet individuals' choices of type and use of media are based on a variety of characteristics. This paper examines one personality trait, sensation seeking, which has not appeared in the literature examining "new" media preferences and use. Sensation seeking is a personality trait defined as "the need for varied, novel, and complex sensations and experiences and the willingness to take physical and social risks for the sake of such experiences" (Zuckerman 1979). Six hypotheses were developed from a review of the literature. Particular attention was given to the Uses and Gratification theory (Katz 1959), which explains various reasons why people choose media types and their motivations for using the different types of media. Current theory suggests that High Sensation Seekers (HSS), due to their needs for novelty, arousal and unconventional content and imagery, would exhibit higher frequency of use of new media. Specifically, we hypothesize that HSS will use the internet more than broadcast (H1a) or print media (H1b) and more than low (LSS) (H2a) or medium sensation seekers (MSS) (H2b). In addition, HSS have been found to be more social and have higher numbers of friends therefore are expected to use social networking websites such as Facebook/MySpace (H3) and chat rooms (H4) more than LSS (a) and MSS (b). Sensation seekers can manifest into a range of behaviors including disinhibition,. It is expected that alternative social networks such as Facebook/MySpace (H5) and chat rooms (H6) will be used more often for those who have higher levels of disinhibition than low (a) or medium (b) levels. Data were collected using an online survey of participants in extreme sports. In order to reach this group, an improved version of a snowball sampling technique, chain-referral method, was used to select respondents for this study. This method was chosen as it is regarded as being effective to reach otherwise hidden population groups (Heckathorn, 1997). A final usable sample of 1108 respondents, which was mainly young (56.36% under 34), male (86.1%) and middle class (58.7% with household incomes over USD 50,000) was consistent with previous studies on sensation seeking. Sensation seeking was captured using an existing measure, the Brief Sensation Seeking Scale (Hoyle et al., 2002). Media usage was captured by measuring the self reported usage of various media types. Results did not support H1a and b. HSS did not show higher levels of usage of alternative media such as the internet showing in fact lower mean levels of usage than all the other types of media. The highest media type used by HSS was print media, suggesting that there is a revolt against the mainstream. Results support H2a and b that HSS are more frequent users of the internet than LSS or MSS. Further analysis revealed that there are significant differences in the use of print media between HSS and LSS, suggesting that HSS may seek out more specialized print publications in their respective extreme sport activity. Hypothesis 3a and b showed that HSS use Facebook/MySpace more frequently than either LSS or MSS. There were no significant differences in the use of chat rooms between LSS and HSS, so as a consequence no support for H4a, although significant for MSS H4b. Respondents with varying levels of disinhibition were expected to have different levels of use of Facebook/MySpace and chat-rooms. There was support for the higher levels of use of Facebook/MySpace for those with high levels of disinhibition than low or medium levels, supporting H5a and b. Similarly there was support for H6b, Those with high levels of disinhibition use chat-rooms significantly more than those with medium levels but not for low levels (H6a). The findings are counterintuitive and give some interesting insights for managers. First, although HSS use online media more frequently than LSS or MSS, this groups use of online media is less than either print or broadcast media. The advertising executive should not place too much emphasis on online media for this important market segment. Second, social media, such as facebook/Myspace and chatrooms should be examined by managers as potential ways to reach this group. Finally, there is some implication for public policy by the higher levels of use of social media by those who are disinhibited. These individuals are more inclined to engage in more socially risky behavior which may have some dire implications, e.g. by internet predators or future employers. There is a limitation in the study in that only those who engage in extreme sports are included. This is by nature a HSS activity. A broader population is therefore needed to test if these results hold.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

Research Framework for International Franchising (국제프랜차이징 연구요소 및 연구방향)

  • Kim, Ju-Young;Lim, Young-Kyun;Shim, Jae-Duck
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.61-118
    • /
    • 2008
  • The purpose of this research is to construct research framework for international franchising based on existing literature and to identify research components in the framework. Franchise can be defined as management styles that allow franchisee use various management assets of franchisor in order to make or sell product or service. It can be divided into product distribution franchise that is designed to sell products and business format franchise that is designed for running it as business whatever its form is. International franchising can be defined as a way of internationalization of franchisor to foreign country by providing its business format or package to franchisee of host country. International franchising is growing fast for last four decades but academic research on this is quite limited. Especially in Korea, research about international franchising is carried out on by case study format with single case or empirical study format with survey based on domestic franchise theory. Therefore, this paper tries to review existing literature on international franchising research, providing research framework, and then stimulating new research on this field. International franchising research components include motives and environmental factors for decision of expanding to international franchising, entrance modes and development plan for international franchising, contracts and management strategy of international franchising, and various performance measures from different perspectives. First, motives of international franchising are fee collection from franchisee. Also it provides easier way to expanding to foreign country. The other motives including increase total sales volume, occupying better strategic position, getting quality resources, and improving efficiency. Environmental factors that facilitating international franchising encompasses economic condition, trend, and legal or political factors in host and/or home countries. In addition, control power and risk management capability of franchisor plays critical role in successful franchising contract. Final decision to enter foreign country via franchising is determined by numerous factors like history, size, growth, competitiveness, management system, bonding capability, industry characteristics of franchisor. After deciding to enter into foreign country, franchisor needs to set entrance modes of international franchising. Within contractual mode, there are master franchising and area developing franchising, licensing, direct franchising, and joint venture. Theories about entrance mode selection contain concepts of efficiency, knowledge-based approach, competence-based approach, agent theory, and governance cost. The next step after entrance decision is operation strategy. Operation strategy starts with selecting a target city and a target country for franchising. In order to finding, screening targets, franchisor needs to collect information about candidates. Critical information includes brand patent, commercial laws, regulations, market conditions, country risk, and industry analysis. After selecting a target city in target country, franchisor needs to select franchisee, in other word, partner. The first important criteria for selecting partners are financial credibility and capability, possession of real estate. And cultural similarity and knowledge about franchisor and/or home country are also recognized as critical criteria. The most important element in operating strategy is legal document between franchisor and franchisee with home and host countries. Terms and conditions in legal documents give objective information about characteristics of franchising agreement for academic research. Legal documents have definitions of terminology, territory and exclusivity, agreement of term, initial fee, continuing fees, clearing currency, and rights about sub-franchising. Also, legal documents could have terms about softer elements like training program and operation manual. And harder elements like law competent court and terms of expiration. Next element in operating strategy is about product and service. Especially for business format franchising, product/service deliverable, benefit communicators, system identifiers (architectural features), and format facilitators are listed for product/service strategic elements. Another important decision on product/service is standardization vs. customization. The rationale behind standardization is cost reduction, efficiency, consistency, image congruence, brand awareness, and competitiveness on price. Also standardization enables large scale R&D and innovative change in management style. Another element in operating strategy is control management. The simple way to control franchise contract is relying on legal terms, contractual control system. There are other control systems, administrative control system and ethical control system. Contractual control system is a coercive source of power, but franchisor usually doesn't want to use legal power since it doesn't help to build up positive relationship. Instead, self-regulation is widely used. Administrative control system uses control mechanism from ordinary work relationship. Its main component is supporting activities to franchisee and communication method. For example, franchisor provides advertising, training, manual, and delivery, then franchisee follows franchisor's direction. Another component is building franchisor's brand power. The last research element is performance factor of international franchising. Performance elements can be divided into franchisor's performance and franchisee's performance. The conceptual performance measures of franchisor are simple but not easy to obtain objectively. They are profit, sale, cost, experience, and brand power. The performance measures of franchisee are mostly about benefits of host country. They contain small business development, promotion of employment, introduction of new business model, and level up technology status. There are indirect benefits, like increase of tax, refinement of corporate citizenship, regional economic clustering, and improvement of international balance. In addition to those, host country gets socio-cultural change other than economic effects. It includes demographic change, social trend, customer value change, social communication, and social globalization. Sometimes it is called as westernization or McDonaldization of society. In addition, the paper reviews on theories that have been frequently applied to international franchising research, such as agent theory, resource-based view, transaction cost theory, organizational learning theory, and international expansion theories. Resource based theory is used in strategic decision based on resources, like decision about entrance and cooperation depending on resources of franchisee and franchisor. Transaction cost theory can be applied in determination of mutual trust or satisfaction of franchising players. Agent theory tries to explain strategic decision for reducing problem caused by utilizing agent, for example research on control system in franchising agreements. Organizational Learning theory is relatively new in franchising research. It assumes organization tries to maximize performance and learning of organization. In addition, Internalization theory advocates strategic decision of direct investment for removing inefficiency of market transaction and is applied in research on terms of contract. And oligopolistic competition theory is used to explain various entry modes for international expansion. Competency theory support strategic decision of utilizing key competitive advantage. Furthermore, research methodologies including qualitative and quantitative methodologies are suggested for more rigorous international franchising research. Quantitative research needs more real data other than survey data which is usually respondent's judgment. In order to verify theory more rigorously, research based on real data is essential. However, real quantitative data is quite hard to get. The qualitative research other than single case study is also highly recommended. Since international franchising has limited number of applications, scientific research based on grounded theory and ethnography study can be used. Scientific case study is differentiated with single case study on its data collection method and analysis method. The key concept is triangulation in measurement, logical coding and comparison. Finally, it provides overall research direction for international franchising after summarizing research trend in Korea. International franchising research in Korea has two different types, one is for studying Korean franchisor going overseas and the other is for Korean franchisee of foreign franchisor. Among research on Korean franchisor, two common patterns are observed. First of all, they usually deal with success story of one franchisor. The other common pattern is that they focus on same industry and country. Therefore, international franchise research needs to extend their focus to broader subjects with scientific research methodology as well as development of new theory.

  • PDF

Clinicopathologic Characteristics of and Surgical Strategy for Patients with Submucosal Gastric Carcinomas (위 점막하층암의 임상병리학적 특징과 수술 방법)

  • Park Chan Yong;Seo Kyoung Won;Joo Jai Kyun;Park Young Kyu;Ryu, Seong Yeob;Kim Hyeong Rok;Kim Dong Yi;Kim Young Jin
    • Journal of Gastric Cancer
    • /
    • v.5 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • Purpose: Early gastric cancer (EGC) has an excellent prognosis compared to advanced gastric cancer. The 5-year survival rate for EGC now exceeds $90\%$, and EGC is recognized as a curable malignancy. The important prognostic factor in EGC is the status of lymph-node metastasis. Despite conserving surgery being suggested for EGC at present, it is of vital importance to select a surgical method appropriate to each individual case. This retrospective study was undertaken to clarify clinicopathologic features and factors related to lymph-node metastasis in submucosal gastric cancer in order to determine an appropriate therapy. Materials and Methods: This study analyzed the clinicopathologic features for 279 patients with a submucosal gastric carcinoma (Group I) and compared with those of patients with mucosal (Group II) or muscularis proprial gastric carcinoma (Group III). All patients were operated on from 1981 to 1999 at Chonnam University Hospital. There were no statistically significant differences among the groups with respect to age, gender, tumor location, hepatic metastasis, or peritoneal dissemination. Results: Positive lymph node metastasis was found in 47 ($16.8\%$) of the 279 patients with a submucosal gastric carcinoma. The incidence of lymph-node metastasis was significantly higher in patients with a submucosal gastric carcinoma than in patients with a mucosal gastric carcinoma ($16.8\%\;vs.\;3.9\%\;$; P<0.01). Therefore, depth of invasion was a significant factor affecting in lymph-node metastasis. The 5-year survival rates were $88.6\%$ for patients in Group I, $95.2\%$ for patients in Group II, and $72.7\%$ for patients in Group III (P<0.01 for Group I vs. Group II; Group I vs. Group III). In patients with a submucosal gastric carcinoma, the survival rate with positive lymph nodes was significantly poorer than that of patients without lymph-node metastasis ($87.3\%\;vs.\;94.2\%$; P<0.01). Conclusion: Gastrectomy with D2 lymph node dissection is an appropriate operative procedure for patients with a submucosal gastric carcinoma.

  • PDF

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

Adaptive RFID anti-collision scheme using collision information and m-bit identification (충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법)

  • Lee, Je-Yul;Shin, Jongmin;Yang, Dongmin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification) system is non-contact identification technology. A basic RFID system consists of a reader, and a set of tags. RFID tags can be divided into active and passive tags. Active tags with power source allows their own operation execution and passive tags are small and low-cost. So passive tags are more suitable for distribution industry than active tags. A reader processes the information receiving from tags. RFID system achieves a fast identification of multiple tags using radio frequency. RFID systems has been applied into a variety of fields such as distribution, logistics, transportation, inventory management, access control, finance and etc. To encourage the introduction of RFID systems, several problems (price, size, power consumption, security) should be resolved. In this paper, we proposed an algorithm to significantly alleviate the collision problem caused by simultaneous responses of multiple tags. In the RFID systems, in anti-collision schemes, there are three methods: probabilistic, deterministic, and hybrid. In this paper, we introduce ALOHA-based protocol as a probabilistic method, and Tree-based protocol as a deterministic one. In Aloha-based protocols, time is divided into multiple slots. Tags randomly select their own IDs and transmit it. But Aloha-based protocol cannot guarantee that all tags are identified because they are probabilistic methods. In contrast, Tree-based protocols guarantee that a reader identifies all tags within the transmission range of the reader. In Tree-based protocols, a reader sends a query, and tags respond it with their own IDs. When a reader sends a query and two or more tags respond, a collision occurs. Then the reader makes and sends a new query. Frequent collisions make the identification performance degrade. Therefore, to identify tags quickly, it is necessary to reduce collisions efficiently. Each RFID tag has an ID of 96bit EPC(Electronic Product Code). The tags in a company or manufacturer have similar tag IDs with the same prefix. Unnecessary collisions occur while identifying multiple tags using Query Tree protocol. It results in growth of query-responses and idle time, which the identification time significantly increases. To solve this problem, Collision Tree protocol and M-ary Query Tree protocol have been proposed. However, in Collision Tree protocol and Query Tree protocol, only one bit is identified during one query-response. And, when similar tag IDs exist, M-ary Query Tree Protocol generates unnecessary query-responses. In this paper, we propose Adaptive M-ary Query Tree protocol that improves the identification performance using m-bit recognition, collision information of tag IDs, and prediction technique. We compare our proposed scheme with other Tree-based protocols under the same conditions. We show that our proposed scheme outperforms others in terms of identification time and identification efficiency.

Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System (법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론)

  • Kim, Ji Hyun;Lee, Jong-Seo;Lee, Myungjin;Kim, Wooju;Hong, June Seok
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.137-152
    • /
    • 2012
  • In the generation of Web 2.0, as many users start to make lots of web contents called user created contents by themselves, the World Wide Web is overflowing by countless information. Therefore, it becomes the key to find out meaningful information among lots of resources. Nowadays, the information retrieval is the most important thing throughout the whole field and several types of search services are developed and widely used in various fields to retrieve information that user really wants. Especially, the legal information search is one of the indispensable services in order to provide people with their convenience through searching the law necessary to their present situation as a channel getting knowledge about it. The Office of Legislation in Korea provides the Korean Law Information portal service to search the law information such as legislation, administrative rule, and judicial precedent from 2009, so people can conveniently find information related to the law. However, this service has limitation because the recent technology for search engine basically returns documents depending on whether the query is included in it or not as a search result. Therefore, it is really difficult to retrieve information related the law for general users who are not familiar with legal terms in the search engine using simple matching of keywords in spite of those kinds of efforts of the Office of Legislation in Korea, because there is a huge divergence between everyday words and legal terms which are especially from Chinese words. Generally, people try to access the law information using everyday words, so they have a difficulty to get the result that they exactly want. In this paper, we propose a term mapping methodology between everyday words and legal terms for general users who don't have sufficient background about legal terms, and we develop a search service that can provide the search results of law information from everyday words. This will be able to search the law information accurately without the knowledge of legal terminology. In other words, our research goal is to make a law information search system that general users are able to retrieval the law information with everyday words. First, this paper takes advantage of tags of internet blogs using the concept for collective intelligence to find out the term mapping relationship between everyday words and legal terms. In order to achieve our goal, we collect tags related to an everyday word from web blog posts. Generally, people add a non-hierarchical keyword or term like a synonym, especially called tag, in order to describe, classify, and manage their posts when they make any post in the internet blog. Second, the collected tags are clustered through the cluster analysis method, K-means. Then, we find a mapping relationship between an everyday word and a legal term using our estimation measure to select the fittest one that can match with an everyday word. Selected legal terms are given the definite relationship, and the relations between everyday words and legal terms are described using SKOS that is an ontology to describe the knowledge related to thesauri, classification schemes, taxonomies, and subject-heading. Thus, based on proposed mapping and searching methodologies, our legal information search system finds out a legal term mapped with user query and retrieves law information using a matched legal term, if users try to retrieve law information using an everyday word. Therefore, from our research, users can get exact results even if they do not have the knowledge related to legal terms. As a result of our research, we expect that general users who don't have professional legal background can conveniently and efficiently retrieve the legal information using everyday words.