• Title/Summary/Keyword: seismicity parameters

Search Result 35, Processing Time 0.023 seconds

Study on Earthquakes of Korea based on the Local Data of 1926~1943 (1926~1943년(年)의 국지자료(局地資料)에 의한 한국 지진(地震)의 연구(硏究))

  • Kim, Sang Jo
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.1-19
    • /
    • 1980
  • The local earthquake data, observed by Wiechert seismograph in Korea during Feb. 1926-May 1943, was provided and investigated. Using S-P monogram of JMA, mainly Tsuboi's formula and additional intensity data, the earthquake parameters are obtained as much as possible within a reasonable discrepancy. The seismic characteristics as to the epicenter distribution was discussed under the viewpoint of its relation to the adjacent geologic structure. Some statistical results are analyzed comparing with Kyushu region which provide a reasonable interpretation on the seismicity of Korea. By superposing the available information of the individual events, the general trend of stress field was found to be east-west compression, which mostly agree with that of the southwestern Japan.

  • PDF

Integrated Optimum Design and Cost Effectiveness Evaluation of Viscoelastically Damped Building Structures based on Life-Cycle Cost Minimization (생애주기비용 최소화에 의한 점탄성감쇠기 장착 빌딩구조물의 통합최적설계 및 비용효율성 평가)

  • Park, Kwan-Soon;Hahm, Dae-Gi;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.17-27
    • /
    • 2005
  • This paper presents an integrated optimum design and a cost effectiveness evaluation method of a viscoelastically damped structural system. The criterion selected for the optimization is the minimization of the life?cycle cost which is a function of structural sizing variables and the amount of the viscoelastic damper. A genetic algorithm is used as a numerical searching technique in order to simultaneously find the optimum parameters of the integrated system. Optimal distributions of design variables according to various seismic characteristics are investigated by applying the proposed design method to a numerical example of a 10?story building structure. The cost effectiveness of viscoelastically damped structural system is also evaluated by comparing the life-cycle cost of the structure without viscoelastic dampers. The results show that the viscoelastic damper is effective in a region of low to moderate seismicity.

Duration Magnitude and Local-Duration Magnitude Relations for Earth-quakes of 1979-1998 Recorded at KMA Network (한반도 지진의 지속규모식에 관한 연구)

  • 박삼근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.421-435
    • /
    • 1998
  • An empirical formula for estimating duration magnitude(MD)is determined by analyzing 619 epicentral distance-duration data set, obtained from earthquakes of 1989-1998 recorded at the KMA network. Based on two assumptions: 1) observed signal duration decreases with increasing epicentral distance, and 2) seismographs of KMA are set at low-gain and therefore inclusion of sensitivity correction term in the equation is not necessary, scaling predicted duration at epicenter to Tsuboi's local magnitude yielded the duration magnitude equation: MD =2.0292$\times$log$\tau$+0.00123Δ-1.4017 for 1/0$\leq$ML$\leq$5.0, where $\tau$is total signal duration(sec)and Δis epicentral distance(km). Event by event comparison of ML values against MD estimates for t152 events shows that for events having a same ML the difference in MD estimates reaches as high as 1.1 magnitude units. So, to test the usefulness of the duration magnitude equation, we have calculated ML-MD relations by which duration magnitude estimates are converted to local magnitudes ("predicted" ML, say) which are then compared with the directly determined local magnitude values. Except for events with stations where duration is anomalously reestimates(predicted ML) which are in an agreement within a 0.2 magnitude units with the corresponding ML values. Although this study could gain some insights into magnitudes of the past events, we still need to re-examine all the observables in order to obtain more reliable and precise information about magnitude and hypocenter location. So we will pursue a new local-magnitude scaling, as well as refinement of the duration magnitude equation, starting soon with re-reading the amplitudes-arrival time records of (and hence relocating) 250+earthquakes of 1979-present recorded at the KMA network. Thus, with more reliable and precise earthquake parameters determined we would better understand the recent seismicity and related tectonic process within and adjacent region to the Korean peninsula.peninsula.

  • PDF

Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran

  • Nanehkaran, Yaser A.;Mao, Yimin;Azarafza, Mohammad;Kockar, Mustafa K.;Zhu, Hong-Hu
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.407-418
    • /
    • 2021
  • Due to the complexity of the causes of the sliding mass instabilities, landslide susceptibility and hazard evaluation are difficult, but they can be more carefully considered and regionally evaluated by using new programming technologies to minimize the hazard. This study aims to evaluate the landslide hazard zonation in the Tabriz region, Iran. A fuzzy logic-based multi-criteria decision-making method was proposed for susceptibility analysis and preparing the hazard zonation maps implemented in MATLAB programming language and Geographic Information System (GIS) environment. In this study, five main factors have been identified as triggering including climate (i.e., precipitation, temperature), geomorphology (i.e., slope gradient, slope aspect, land cover), tectonic and seismic parameters (i.e., tectonic lineament congestion, distribution of earthquakes, the unsafe radius of main faults, seismicity), geological and hydrological conditions (i.e., drainage patterns, hydraulic gradient, groundwater table depth, weathered geo-materials), and human activities (i.e., distance to roads, distance to the municipal areas) in the study area. The results of analyses are presented as a landslide hazard map which is classified into 5 different sensitive categories (i.e., insignificant to very high potential). Then, landslide susceptibility maps were prepared for the Tabriz region, which is categorized in a high-sensitive area located in the northern parts of the area. Based on these maps, the Bozgoosh-Sahand mountainous belt, Misho-Miro Mountains and western highlands of Jolfa have been delineated as risk-able zones.

Analysis of Plate Motion Parameters in Southeastern South Korea using GNSS (GNSS를 활용한 한반도 동남권 지역의 지각 변동 파라미터 분석)

  • Lee, Seung Jun;Yun, Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.697-705
    • /
    • 2020
  • This paper deals with an analysis of crustal movement for the sourthern part of Korean peninsula using GNSS (Global Navigation Satellite System) data. An earthquake of more than 5.0 occurred in the southeastern region of the Korean Peninsula, and it is necessary to evaluate the risk of earthquakes in various ways.In order to reveal long-term tectonic movement patten in Pohang and Gyeongju provinces, we derived crustal movement parameters related with elastic theory. We used GAMIT/GLOBK for analyzing seven-year interval GNSS data of CORS (Continuously Operating Reference Stations). The azimuth of velocity vectors trended generally about 110° with an mean magnitude of 31mm/yr.The main characteristics of the strain change for seven-year in Korea obtaind from our study. Direction of the principal axis of the maximum compression is ENE-WSW as a whole, through there are some exceptions. The mean rate of the maximum shear strain change is (0.11±0.07)μ/yr, that is approximately one third that of Chubu district, Central Japan. Taking into account our results, the mean rate of maximum shear in southern part of Korean peninsula is considered as reasonable. The mean azimuth of principal strain is about (85.4°±26.8°). There are some exceptions of azimuth because the average azimuth differ from the left and right side in Yangsan fault which are about (73.2°±21.5°) and (105.2°±17.0°) respectively, It is noteworthy that the high seismicity areas in the southern part of Korea peninsula almost coincides with the area of large strain rate. As a conclusion, it could be stated that the our study represents the characteristics of crustal deformation in the southern part of peninsula, and contributes to the researches on earthquake disaster management.