• Title/Summary/Keyword: seismic wave

Search Result 778, Processing Time 0.027 seconds

A Study on Reliquefaction Behavior of Railway Embankment Using 1g Shaking Table Test (1g 진동대 실험을 이용한 철도 제방의 재액상화 거동 연구)

  • Chae, Minhwan;Yoo, Mintaek;Lee, Il-Wha;Lee, Myungjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.71-81
    • /
    • 2021
  • The purpose of this study is liquefaction phenomenon was simulated using the 1g shaking table test. Analysis of liquefaction and Re-liquefaction behavior according to the ground conditions was analyzed when an embankment exists above the ground. The soil used in the experiment was silica sand and the ground composition was a liquefied layer of 50cm (Case 1), a non-liquefied layer of 17.5cm and a liquefied layer of 32.5cm (Case 2). The embankment was formed by fixing the height of 10cm and the slope of the slope at a ratio of 1:1.8. For seismic waves, excitation of a 5Hz sine wave was performed for 8 seconds, and a total of 5 case excitations were performed. In Case 1, it was confirmed that liquefaction occurred at all depths during the first vibration excitation at the free-field and that liquefaction did not occur at all depths except 5cm at the third vibration excitation. At the center of the embankment, liquefaction occurred up to a depth of 20cm during the first vibration excitation, and it was confirmed that liquefaction did not occur at all depths except for a depth of 5cm during the second vibration excitation.

S-velocity and Radial Anisotropy Structures in the Western Pacific Using Partitioned Waveform Inversion (분할 파형 역산을 사용한 서태평양 지역 S파 속도 및 방사 이방성 구조 연구)

  • Ji-hoon Park;Sung-Joon Chang;Michael Witek
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.365-384
    • /
    • 2023
  • We applied the partitioned waveform inversion to 2,026 event data recorded at 173 seismic stations from the Incorporated Research Institutions for Seismology Data Managing Center and the Ocean Hemisphere network Project to estimate S-wave velocity and radial anisotropy models beneath the Western Pacific. In the Philippine Sea plate, high-Vs anomalies reach deeper in the West Philippine basin than in the Parece-Vela basin. Low-Vs anomalies found at 80 km below the Parece-Vela basin extend deeper into the West Philippine Basin. This velocity contrast between the basins may be caused by differences in lithospheric age. Low-Vs anomalies are observed beneath the Caroline seamount chain and the Caroline plate. Overall positive radial anisotropy anomalies are observed in the Western Pacific, but negative radial anisotropy is found at > 220 km depth on the subducting plate along the Mariana trench and at ~50 km in the Parece-Vela basin. Positive radial anisotropy is found at > 200 km depth beneath the Caroline seamount chain, which may indicate the 'drag' between the plume and the moving Pacific plate. High-Vs anomalies are found at 40 ~ 180 km depth beneath the Ontong-Java plateau, which may indicate the presence of unusually thick lithosphere due to underplating of dehydrated plume material.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

Analysis of Tsunami Characteristics of Korea Southern Coast Using a Hypothetical Scenario (가상시나리오에 따른 남해안 지진해일 특성 연구)

  • Bumshick Shin;Dong-Seog Kim;Dong-Hwan Kim;Sang-Yeop Lee;Si-Bum Jo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.80-86
    • /
    • 2024
  • Large-scale earthquakes are occurring globally, especially in the South Asian crust, which is experiencing a state of tension in the aftermath of the 2011 East Japan Earthquake. Uncertainty and fear regarding the possibility of further seismic activity in the near future have been on the rise in the region. The National Disaster Management Research Institute has previously studied and analyzed the overflow characteristics of a tsunami and the rate of flood forecasting through tsunami numerical simulations of the East Sea of South Korea. However, there is currently a significant lack of research on the Southern Coast tsunamis compared to the East Coast. On the Southern Coast, the tidal difference is between 1~4 m, and the impact of the tides is hard to ignore. Therefore, it is necessary to analyze the impact of the tide propagation characteristics on the tsunami. Occurrence regions that may cradle tsunamis that affect the southern coast region are the Ryukyu Island and Nankai Trough, which are active seafloor fault zones. The Southern Coast has not experienced direct damage from tsunamis before, but since the possibility is always present, further research is required to prepare precautionary measures in the face of a potential event. Therefore, this study numerically simulated a hypothetical tsunami scenario that could impact the southern coast of South Korea. In addition, the tidal wave propagation characteristics that emerge at the shore due to tide and tsunami interactions will be analyzed. This study will be used to prepare for tsunamis that might occur on the southern coast through tsunami hazard and risk analysis.

Geoacoustic characteristics of Quaternary stratigraphic sequences in the mid-eastern Yellow Sea (황해 중동부 제4기 퇴적층의 지음향 특성)

  • Jin, Jae-Hwa;Jang, Seong-Hyeong;Kim, Seong-Pil;Kim, Hyeon-Tae;Lee, Chi-Won;Chang, Jeong-Hae;Choi, Jin-Hyeok;Ryang, Woo-Heon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 2001
  • According to analyses of high-resolution seismic profiles (air gun, sparker, and SBP) and a deep-drill core(YSDP 105) in the mid-eastern Yellow Sea, stratigraphic and geoacoustic models have been established and seismo-acoustic modeling has been fulfilled using ray tracing of finite element method. Stratigraphic model reflects seismo-, litho-, and chrono-stratigraphic sequences formed under a significant influence of Quaternary glacio-eustatic sea-level fluctuations. Each sequence consists of terrestrial to very-shallow-marine coarse-grained lowstand systems tract and tidal fine-grained transgressive to highstand systems tract. Based on mean grain-size data (121 samples) of the drill core, bulk density and P-wave velocity of depositional units have been inferred and extrapolated down to a depth of the recovery using the Hamilton's regression equations. As goo-acoustic parameters, the 121 pairs of bulk density and P-wave velocity have been averaged on each unit of the stratigraphic model. As a result of computer ray-tracing simulation of the subsurface strata, we have found that there are complex ray paths and many acoustic-shadow zones owing to the presence of irregular layer boundaries and low-velocity layers.

  • PDF

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.

Analysis of the Effect of the Revised Ground Amplification Factor on the Macro Liquefaction Assessment Method (개정된 지반증폭계수의 Macro적 액상화 평가에 미치는 영향 분석)

  • Baek, Woo-Hyun;Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.2
    • /
    • pp.5-15
    • /
    • 2020
  • The liquefaction phenomenon that occurred during the Pohang earthquake (ML=5.4) brought new awareness to the people about the risk of liquefaction caused by the earthquake. Liquefaction hazard maps with 2 km grid made in 2014 used more than 100,000 borehole data for the whole country, and regions without soil investigation data were produced using interpolation. In the mapping of macro liquefaction hazard for the whole country, the site amplification effect and the ground water level 0 m were considered. Recently, the Ministry of Public Administration and Security (2018) published a new site classification method and amplification coefficient of the common standard for seismic design. Therefore, it is necessary to rewrite the liquefaction hazard map reflecting the revised amplification coefficient. In this study, the results of site classification according to the average shear wave velocity in soils before and after revision were compared in the whole country. Also, liquefaction assessment results were compared in Gangseo-gu, Busan. At this time, two ground accelerations corresponding to the 500 and 1,000 years of return period and two ground water table, 5 m for the average condition and 0 m the extreme condition were applied. In the drawing of liquefaction hazard map, a 500 m grid was applied to secure a resolution higher than the previous 2 km grid. As a result, the ground conditions that were classified as SC and SD grounds based on the existing site classification standard were reclassified as S2, S3, and S4 through the revised site classification standard. Also, the result of the Liquefaction assessments with a return period of 500 years and 1,000 years resulted in a relatively overestimation of the LPI applied with the ground amplification factor before revision. And the results of this study have a great influence on the liquefaction assessment, which is the basis of the creation of the regional liquefaction hazard map using the amplification factor.

Estimation of Dynamic Material Properties for Fill Dam : II. Nonlinear Deformation Characteristics (필댐 제체 재료의 동적 물성치 평가 : II. 비선형 동적 변형특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Choo, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.87-105
    • /
    • 2009
  • Nonlinear dynamic deformation characteristics, expressed in terms of normalized shear modulus reduction curve (G/$G_{max}-\log\gamma$, G/$G_{max}$ curve) and damping curve (D-$\log\gamma$), are important input parameters with shear wave velocity profile ($V_s$-profile) in the seismic analysis of (new or existing) fill dam. In this paper, the reasonable and economical methods to evaluate the nonlinear dynamic deformation characteristics for core zone and rockfill zone respectively are presented. For the core zone, 111 G/$G_{max}$ curves and 98 damping curves which meet the requirements of core material were compiled and representative curves and ranges were proposed for the three ranges of confining pressure (0~100 kPa, 100 kPa~200 kPa, more than 200 kPa). The reliability of the proposed curves for the core zone were verified by comparing with the resonant column test results of two kinds of core materials. For the rockfill zone, 135 G/$G_{max}$ curves and 65 damping curves were compiled from the test results of gravelly materials using large scale testing equipments. The representative curves and ranges for G/$G_{max}$ were proposed for the three ranges of confining pressure (0~50 kPa, 50 kPa~100 kPa, more than 100 kPa) and those for damping were proposed independently of confining pressure. The reliability of the proposed curves for the rockfill zone were verified by comparing with the large scale triaxial test results of rockfill materials in the B-dam which is being constructed.