• 제목/요약/키워드: seismic vibration control

검색결과 246건 처리시간 0.023초

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • 제3권2호
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 2:해석적 연구) (Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method(Part 2:Analytical Study))

  • 정명철;송정원;송진규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.148-153
    • /
    • 2018
  • 본 연구에서는 TS 내진보강공법의 내진보강 효과 검증을 목적으로 7개의 지진파에 대한 TS 댐퍼(Tension Spring-Damper)로 내진보강된 구조물의 비선형 시간이력해석을 수행하였다. 비선형 시간이력 해석을 통해 얻어진 무보강 구조물의 층간변위비와 에너지소산 양과 비교한 결과 층간변위비가 약 30% 가량 감소하였고, 구조체를 통한 에너지 소산의 양은 반감되었다. 이를 통해 TS 내진보강공법의 제진성능이 우수함을 확인하였다.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

Seismic vibration control of an innovative self-centering damper using confined SMA core

  • Qiu, Canxing;Gong, Zhaohui;Peng, Changle;Li, Han
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.241-254
    • /
    • 2020
  • Using confined shape memory alloy (SMA) bar or plate, this study proposes an innovative self-centering damper. The damper is essentially properly machined SMA core, i.e., bar or plate, that encased in buckling-restrained device. To prove the design concept, cyclic loading tests were carried out. According to the test results, the damper exhibited desired flag-shape hysteretic behaviors upon both tension and compression actions, although asymmetric behavior is noted. Based on the experimental data, the hysteretic parameters that interested by seismic applications, such as the strength, stiffness, equivalent damping ratio and recentering capacity, are quantified. Processed in the Matlab/Simulink environment, a preliminary evaluation of the seismic control effect for this damper was conducted. The proposed damper was placed at the first story of a multi-story frame and then the original and controlled structures were subjected to earthquake excitations. The numerical outcome indicated the damper is effective in controlling seismic deformation demands. Besides, a companion SMA damper which represents a popular type in previous studies is also introduced in the analysis to further reveal the seismic control characteristics of the newly proposed damper. In current case, it was found that although the current SMA damper shows asymmetric tension-compression behavior, it successfully contributes comparable seismic control effect as those having symmetrical cyclic behavior. Additionally, the proposed damper even shows better global performance in controlling acceleration demands. Thus, this paper reduces the concern of using SMA dampers with asymmetric cyclic behavior to a certain degree.

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation

  • Braz-Cesar, Manuel T.;Barros, Rui C.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.389-395
    • /
    • 2018
  • This paper presents the application of a semi-active fuzzy based control system for seismic response reduction of a single degree-of-freedom (SDOF) framed structure using a Magnetorheological (MR) damper. Semi-active vibration control with MR dampers has been shown to be a viable approach to protect building structures from earthquake excitation. Moreover, intelligent damping systems based on soft-computing techniques such as fuzzy logic models have the inherent robustness to deal with typical uncertainties and non-linearities present in civil engineering structures. Thus, the proposed semi-active control system uses fuzzy logic based models to simulate the behavior of MR damper and also to develop the control algorithm that computes the required control signal to command the actuator. The results of the numerical simulations show the effectiveness of the suggested semi-active control system in reducing the response of the SDOF structure.

Interstory-interbuilding actuation schemes for seismic protection of adjacent identical buildings

  • Palacios-Quinonero, Francisco;Rubio-Massegu, Josep;Rossell, Josep M.;Rodellar, Jose
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.67-81
    • /
    • 2019
  • Rows of closely adjacent buildings with similar dynamic characteristics are common building arrangements in residential areas. In this paper, we present a vibration control strategy for the seismic protection of this kind of multibuilding systems. The proposed approach uses an advanced Linear Matrix Inequality (LMI) computational procedure to carry out the integrated design of distributed multiactuation schemes that combine interbuilding linking devices with interstory actuators implemented at different levels of the buildings. The controller designs are formulated as static output-feedback H-infinity control problems that include the interstory drifts, interbuilding approachings and control efforts as controlled-output variables. The advantages of the LMI computational procedure are also exploited to design a fully-decentralized velocity-feedback controller, which can define a passive control system with high-performance characteristics. The main ideas are presented by means of a system of three adjacent five-story identical buildings, and a proper set of numerical simulations are conducted to demonstrate the behavior of the different control configurations. The obtained results indicate that interstory-interbuilding multiactuation schemes can be used to design effective vibration control systems for adjacent buildings with similar dynamic characteristics. Specifically, this kind of control systems is able to mitigate the vibrational response of the individual buildings while maintaining reduced levels of pounding risk.

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.