• 제목/요약/키워드: seismic structural fragility

검색결과 224건 처리시간 0.026초

Sensitivity of Seismic Response and Fragility to Parameter Uncertainty of Single-Layer Reticulated Domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1607-1616
    • /
    • 2018
  • Quantitatively modeling and propagating all sources of uncertainty stand at the core of seismic fragility assessment of structures. This paper investigates the effects of various sources of uncertainty on seismic responses and seismic fragility estimates of single-layer reticulated domes. Sensitivity analyses are performed to examine the sensitivity of typical seismic responses to uncertainties in structural modeling parameters, and the results suggest that the variability in structural damping, yielding strength, steel ultimate strain, dead load and snow load has significant effects on the seismic responses, and these five parameters should be taken as random variables in the seismic fragility assessment. Based on this, fragility estimates and fragility curves incorporating different levels of uncertainty are obtained on the basis of the results of incremental dynamic analyses on the corresponding set of 40 sample models generated by Latin Hypercube Sampling method. The comparisons of these fragility curves illustrate that, the inclusion of only ground motion uncertainty is inappropriate and inadequate, and the appropriate way is incorporating the variability in the five identified structural modeling parameters as well into the seismic fragility assessment of single-layer reticulated domes.

PSC교량의 부재별 상관관계를 고려한 시스템 지진취약도 분석 (Seismic Fragility Analysis of a Bridge System Considering the Correlation of Components of the PSC Bridge)

  • 안효준;신수봉;이종한
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.267-274
    • /
    • 2021
  • Seismic fragility analysis of a structure is generally performed for the expected critical component of a structure. The seismic fragility analysis assumes that all the components behave independently in a structural system. A bridge system consists of many inter-connected components. Thus, for an accurate evaluation of the seismic fragility of a bridge, the seismic fragility analysis requires the composition of probabilities considering the correlation between structural components. This study presented a procedure to obtain the seismic fragility curve of a bridge system, considering the correlation between bridge components. Seismic fragility analysis was performed on a PSC bridge that is considered as the central infrastructure. The analysis results showed that the probability of the seismic fragility curve of the bridge system was higher than that of each bridge component.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

노후도를 고려한 교량의 시스템-수준 지진취약도 평가 (System-Level Seismic Fragility Evaluation of Bridge Considering Aging Effects)

  • 꽁씨나;문지호;송종걸
    • 한국전산구조공학회논문집
    • /
    • 제35권3호
    • /
    • pp.149-158
    • /
    • 2022
  • 교량은 사용년한이 증가함에 따라 노후화로 인해 역학적인 성질과 구조적인 성능이 저하되고, 이로 인해서 강진 시에 내진성능이 저하된다. 교각과 교량받침에 대한 노후화를 몇 가지 단계로 정량화하여 해석모델에 반영하였고, 노후화된 교각과 교량받침에 대하여 부재-수준의 지진취약도를 평가하였다. 교량 시스템의 파괴 메카니즘을 직렬시스템으로 가정하여, 부재-수준의 지진취약도 해석 결과로부터 시스템-수준의 지진취약도를 평가하는 방법을 제안하였다. 노후도에 취약한 부재인 교각과 교량받침에 대하여 5가지 정량적인 노후도(0, 5, 10, 25, 40%)를 가정하여 부재-수준의 지진취약도를 평가하였고, 이 결과로부터 시스템-수준의 지진취약도 평가를 수행하였다. 시스템-수준의 지진취약도는 교량받침 보다는 교각이 지배적인 영향을 줌을 알 수 있었다. 이는 보다 취약한 구조부재의 지진취약도가 전체 교량시스템의 지진취약도에 지배적인 영향을 주는 것을 의미한다.

A new methodology of the development of seismic fragility curves

  • Lee, Young-Joo;Moon, Do-Soo
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.847-867
    • /
    • 2014
  • There are continuous efforts to mitigate structural losses from earthquakes and manage risk through seismic risk assessment; seismic fragility curves are widely accepted as an essential tool of such efforts. Seismic fragility curves can be classified into four groups based on how they are derived: empirical, judgmental, analytical, and hybrid. Analytical fragility curves are the most widely used and can be further categorized into two subgroups, depending on whether an analytical function or simulation method is used. Although both methods have shown decent performances for many seismic fragility problems, they often oversimplify the given problems in reliability or structural analyses owing to their built-in assumptions. In this paper, a new method is proposed for the development of seismic fragility curves. Integration with sophisticated software packages for reliability analysis (FERUM) and structural analysis (ZEUS-NL) allows the new method to obtain more accurate seismic fragility curves for less computational cost. Because the proposed method performs reliability analysis using the first-order reliability method, it provides component probabilities as well as useful byproducts and allows further fragility analysis at the system level. The new method was applied to a numerical example of a 2D frame structure, and the results were compared with those by Monte Carlo simulation. The method was found to generate seismic fragility curves more accurately and efficiently. Also, the effect of system reliability analysis on the development of seismic fragility curves was investigated using the given numerical example and its necessity was discussed.

국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가 (Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings)

  • 전성하;신동현;박지훈
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.

지진취약도 곡선 생성시 선택된 지진파 수에 따른 입력변수 변화에 관한 연구 (A Study of the Relationship Between Number of Ground Motions and Parameters of Seismic Fragility Curve)

  • 박상기;박기태;김재환;정규산;서동우
    • 한국지진공학회논문집
    • /
    • 제28권5호
    • /
    • pp.285-294
    • /
    • 2024
  • Seismic fragility curves present the conditional probability of damage to target structures due to external seismic load and are widely used in various ways. When constructing such a seismic fragility curve, it is essential to consider various types and numbers of ground motions. In general, the earthquake occurrence characteristics of an area where the target structure of the seismic fragility curve exists are analyzed, and based on this, appropriate ground motions are selected to derive the seismic fragility curve. If the number of selected ground motions is large, the diversity of ground motions is considered, but a large amount of computational time is required. Conversely, if the number of ground motions is too small, the diversity of ground motions cannot be considered, which may distort the seismic fragility curve. Therefore, this study analyzed the relationship between the number of ground motions considered when deriving the seismic fragility curve and the parameters of the seismic fragility curve. Using two example structures, numerical analysis was performed by selecting a random number of ground motions from a total of two hundred, and a seismic fragility curve was derived based on the results. Analysis of the relationship of the parameter of the seismic fragility curve and the number of selected ground motions was performed. As the number of ground motions considered increases, uncertainty in ground motion selection decreases, and when deriving seismic fragility curves considering the same number of ground motions, uncertainty increases relatively as the degree of freedom of the target structure increases. However, considering a relatively large number of ground motions, uncertainty appeared insignificant regardless of increased degrees of freedom. Finally, it is possible that the increase in the number of ground motions could lower the epistemic uncertainty and thus improve the reliability of the results.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

확률밀도함수 보간에 의한 교량의 지진취약도 분석 (Seismic Fragility Analysis Utilizing PDF Interpolation Technique)

  • 이진하;김상훈;윤정방
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.495-502
    • /
    • 2003
  • This study proposed the Probability Density Function (PDF) interpolation technique to evaluate the seismic fragility curves as a function of the return period. Seismic fragility curves have been developed as a function of seismic intensities such as peak ground acceleration, peak pound velocity, and pseudo-velocity spectrum. The return period of design earthquakes, however, can be more useful among those seismic intensity measurements, because the seismic hazard curves are generally represented with a return period of design earthquakes and the seismic design codes also require to consider the return period of design earthquake spectrum for a specific site. In this respect the PDF interpolation technique is proposed to evaluate the seismic fragility curves as a function of return period. Seismic fragility curves based on the return period are compared with ones based on the peak ground acceleration for the bridge model.

  • PDF