• 제목/요약/키워드: seismic spectral analysis

검색결과 194건 처리시간 0.03초

단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구 (A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System)

  • 박상기;조정래;조창백;이진혁;김동찬
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

스펙트럼해석법에 의한 교량의 지진해석 및 설계방법의 적용 (Application of Seismic Analysis and Design Method on the Bridges by Spectral Analysis Method)

  • 김운학;유영화;신현목
    • 한국지진공학회논문집
    • /
    • 제1권2호
    • /
    • pp.17-29
    • /
    • 1997
  • 교량의 내진설계에 있어서 일반적인 중.소지간의 교량에 적용하도록 규정법 단일모드 스펙트럼 해석법은 비교적 작은 규모의 단순교량에 적용되는 있는 간단한 내진설계방법에며 국내외를 통틀어 가장 많이 사용되는 방법이다. 그러나 최근에 들어서부터 구조형상이 복잡해지고 지간이 길고 교각고가 높은, 규모가 큰 비정형 교량이 많이 시공되고 있으며 이러한 경우에는 교량의 안전과 경제적, 효율적인 설계를 위해서 반드시 다중모드 스펙트럼 해석법이나 입력지진파에 의한 시간이력해석에 의해서 검토되는 것이 바람직하다.다중모드 스펙트럼 해석법의 경우에는 교량의 형식, 경간의 수, 교각의 강성, 인접교각과의 상대적 강성 및 상부구조의 지지조건 등에 따라서 같은 유형의 교량이라 하더라도 진동응답은 각기 다르기 때문에 일률적인 규칙을 적용하는데에는 어려움이 있다. 따라서 본 연구에서는 도로교량에 대한 효율적인 내진설계가 이루어지기 위해서, 교량이 진동응답 및 특성을 파악할 수 있는 3차원 동적해석 프로그램을 작성하여 내진해석이 용이하게 이루어질 수 있도록 하였으며, 후처리 프로그램을 사용하므로써 동적해석프로그램에 의한 결과를 곧바로 내진설계에 반영할 수 있도록 하였으며, 후처리 프로그램을 사용하므로써 동적해석프로그램에 의한 결과를 곧바로 내진설계에 반영할 수 있도록 하였다. 또한 교량의 형식, 규모, 지지조건 등의 변화에 따른 동적 해석결과로부터 적절하고 효율적인 내진설계의 기준을 제시하였다.

  • PDF

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

지진시 고층 건물 밑면전단력 산정을 위한 지반계수 결정에 대한 연구 (Evaluation of Soil Factors for Determination of Seismic Base Shear Force for High Story Buildings During Earthquake)

  • 윤종구;김동수;임종석;손덕길
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.85-97
    • /
    • 2003
  • 본 논문에서는 건축물 하중기준 및 해설에서 제시된 지반분류 방법으로 지반 III 또는 IV에 해당하는 지반을 대상으로 등가선형해석을 수행하였고, 해석에서 얻어진 스펙트럴 가속도 값으로 지반계수를 역산하여 국내 각 기준에서 제시하고 있는 지반계수와 비교 검토하였다. 해석결과 고유주기 0.9초 이상 고층 건물의 경우 지반 III의 경우 지반 II의 지반계수의 사용이 가능하였고, IV의 경우 지반 III의 지반계수를 사용하여도 충분하였다. 또한, 대부분의 해석에서 얻어진 지반계수의 값이 국내 내진설계기준의 값보다 상당히 작게 나타났다. 이는 내진설계시 국내 내진설계기준을 그대로 적용하면 구조물 밑면전단력이 보수적으로 산정될 수 있음을 의미한다.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Evaluation of seismic assessment procedures for determining deformation demands in RC wall buildings

  • Fox, Matthew J.;Sullivan, Timothy J.;Beyer, Katrin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.911-936
    • /
    • 2015
  • This work evaluates the performance of a number of seismic assessment procedures when applied to a case study reinforced concrete (RC) wall building. The performance of each procedure is evaluated through its ability to accurately predict deformation demands, specifically, roof displacement, inter-storey drift ratio and wall curvatures are considered as the key engineering demand parameters. The different procedures include Direct Displacement-Based Assessment, nonlinear static analysis and nonlinear dynamic analysis. For the latter two approaches both lumped and distributed plasticity modelling are examined. To thoroughly test the different approaches the case study building is considered in different configurations to include the effects of unequal length walls and plan asymmetry. Recommendations are made as to which methods are suited to different scenarios, in particular focusing on the balance that needs to be made between accurate prediction of engineering demand parameters and the time and expertise required to undertake the different procedures. All methods are shown to have certain merits, but at the same time a number of the procedures are shown to have areas requiring further development. This work also highlights a number of key aspects related to the seismic response of RC wall buildings that may significantly impact the results of an assessment. These include the influence of higher-mode effects and variations in spectral shape with ductility demands.

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

중저진 지역에서의 지진격리교량의 경제적 효율성에 관한 연구 (Cost Effectiveness of Bse-Isolation for Bridges in Low and Moderate Seismic Region)

  • 고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.178-185
    • /
    • 1999
  • Minimum life-cycle cost helps to evaluate cost effectiveness of base-isolated bridges under specific condition. Life-cycle cost mainly consists of the initial construction cost and the expected damage cost. Damage cost estimation needs proper model of input ground motion failure probability evaluation method and limit states definition. We model the input ground motion as spectral density function compatible with the response spectra defined at each seismicity and site condition. Spectrum analysis and crossing theory is suitable for reseating calculation of failure probabilities in the process of cost minimization. Limit states of base-isolated bridges re defined for superstructure isolator and pier respectively The method is applied to both base-isolated bridges and conventional bridges under the same conditions to investigate cost effectiveness of base isolation in low and moderate seismic region. the results show that base-isolation of bridges are more effective in low and moderate seismic region and that the site effects on the economical efficiency may not be negligible in such a region.

  • PDF

해석방법에 따른 빌딩구조물의 비탄성 응답 평가 (Estimation of Inelastic Response for Building Structure by Analysis Method)

  • 장동휘;송종걸;정영화
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.31-38
    • /
    • 2005
  • Recent earthquakes have shown that near-field earthquakes can produce spectral demands significantly larger than those considered in current design code. International Atomic Energy Agency (IAEA) has recently initiated a coordinated research program on safety significance of near-field earthquakes. The purpose of this program is to focus on the assessment of vulnerability of nuclear facility structures by using and adapting the best available engineering practices appropriate to evaluate the effects of near-field earthquakes. The objective of this paper is to evaluate of seismic responses of a shear building test specimen subjected to near-filed earthquakes. To achieve the objective, the seismic responses of the test specimen, evaluated by the Displacement Coefficient Method (DCM) and Nonlinear Dynamic Analysis (NDA), are compared with those by the experimental tests.

  • PDF