• 제목/요약/키워드: seismic section

검색결과 513건 처리시간 0.022초

Performance-Based Seismic Design for High-Rise Buildings in Japan

  • Nakai, Masayoshi;Koshika, Norihide;Kawano, Kenichi;Hirakawa, Kiyoaki;Wada, Akira
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.155-167
    • /
    • 2012
  • This paper introduces the outlines of review and approval processes, general criteria and usual practices taken in Japan for the seismic design of high-rise buildings. The structural calculations are based on time-history analyses followed by performance evaluations. This paper also introduces structural design of two high-rise buildings: one is a 100 m high reinforced concrete residential building, and the other is a 300 m high steel building for mixed use.

주철근 겹침이음 및 보강된 RC교각의 이력거동 (Hysteretic Behavior of Retrofitted RC Bridge Piers with Lap Spliced Longitudinal Steels)

  • 이대형;정영수;박창규;박진영;송희원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.121-126
    • /
    • 2003
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predicting of nonlinear hysteric behavior. For the purpose, enhanced analytical trilinear hystretic model has been proposed to simulate the force-displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve for various confinement steel ratios, In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens. The results of this research will be useful to predict of seismic performance for longitudinal steel with lap spliced and its retrofitted specimens.

  • PDF

중공 단면을 갖는 취수탑의 내진 안전성 평가 (Seismic Safety Analysis of Intake Tower with Hollow Inside Section)

  • 배정주;김용곤;이지호;한상훈
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.55-61
    • /
    • 2009
  • Seismic Safety Analysis of Intake Tower is very important because failure of intake tower may incur huge chaos on the modem society. Recently, there has been growing much concern about earthquake resistance of existing structures. This research demonstrates the dynamic fluid pressure calculation using added mass simulation. The actual safety evaluation has been conducted through not only the static analysis but also the dynamic analysis. According to the analysis results, the vibration incurred by earthquake may induce considerable damage to the hydraulic structure. Therefore, the appropriate design process out of exact calculation is quite necessary.

면진설계된 KALIMER 원자로용기의 지진좌굴 특성평가 (Evaluation of Seismic Buckling Load for Seismically Isolated KALIMER Reactor Vessel)

  • 구경회
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.220-227
    • /
    • 1999
  • The Purpose of this paper is to evaluate the buckling strength of conceptually designed KALIMER reactor vessel. For evaluation of the buckling load buckling load the design equations and the finite element analysis are used. In finite element method the eigenvalue buckling analysis nonlinear elastic buckling analysis using snap-through buckling method and nonlinear elastic-plastic buckling analysis are carried out. the calculated buckling loads of KALIMER reactor vessel using the finite element method are in well agreement with those of the design equations. From the calculated results of buckling load in KALIMER rector vessel it is shown that the plasticity of vessel materials significantly affects the buckling load but the initial imperfection has little effects, In checking the limits of bucking load of KALIMER reactor vessel using the ASME B & PV Section III. Subsection NH the non-seismic isolation design can not satisfy the buckling limit requirements but the seismic isolation design can sufficiently satisfy the requirements.

  • PDF

신축이음부에서 충돌을 고려한 콘크리트 교량의 동적해석 (Dynamics Analysis of Concrete Bridges at Expansion Joints Considering Pounding)

  • 최석정;유문식;전찬기;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.176-187
    • /
    • 2001
  • Most bridges have expansion joints to accommodate thermal expansion and contraction without inducing large forces in the bridges. To evaluate the effects of earthquake-induced at expansion joints of concrete bridges, the first part of this paper deals with a collinear impact between concrete segments, which have the same cross section but different lengths. Especially, impact force, momentum, strain energy and kinetic energy are formulated in mathematically. These results are then used in the second part of this paper to simulate a realistic yet simple analysis of seismic pounding in concrete bridges. Analysis of seismic pounding in idealized concrete bridges is carried out by using a simple lumped-mass model and rationally determined values of the coefficient of restitution and the duration of impact.

  • PDF

Macro해석모델에 의한 RC교각의 내진 성능 평가 (Seismic Performance Evaluation of RC Bridge Piers by Macro Mathematical Model)

  • 이대형;박창규;김현준;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.207-210
    • /
    • 2005
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predict of nonlinear hysteric behavior. For the purpose, analytical trilinear hysteretic model has been used to simulate the force displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve vary confinement steel ratio. In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens.

  • PDF

RC 교각의 내진거동 평가를 위한 진동대 실험 (Shake Table Tests for the Evaluation of Seismic Behavior of RC piers)

  • 정영수;심창수;박창규;박창영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.85-88
    • /
    • 2006
  • This paper deals with shaking table tests on RC piers to evaluate the seismic performance under near fault motion. Small scale models were fabricated and axial force was applied by introducing prestress at the centroid of the column section. Mass effect of the superstructures was simulated by mass frame which was linked with a pier model by steel bars because of the limited payload of shaking table. Friction of the mass frame when it moves was minimized by special details and it was proved before tests. Scale factor of the RC piers was 4.25. Main parameters of the test were details of reinforcements. After verifying the results of shaking table tests, seismic performance was evaluated by increasing the acceleration of the near fault motion.

  • PDF

원장방형 철근콘크리트 교각의 내진성능에 관한 실험적 연구 (An Experimental Study on Seismic Performance of RC Bridge Columns with Oblong Section)

  • 이재훈;고성현;서진원;이지영;한상엽
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.368-375
    • /
    • 2003
  • The objectives of this study were to provide experimental data on the behavior of interlocking spiral columns under cyclic loading, to compare the performance of columns with interlocking spirals to columns with U-type hoops with hook, to study the flexural detailing of interlocking spirals and other transverse steel configurations as the transverse reinforcement The oblong columns with interlocking spirals and with hooked U-type hoops and cross-ties better seismic performance than the rectangular columns with rectangular hoops and cross-ties. The oblong columns with hooked U-type hoops and cross-ties showed better seismic performance than the rectangular columns with rectangular hoops and cross-ties. And this research were to make recommendations for the design of bridge columns incorporating interlocking spirals and U-type hoops with hook as the transverse reinforcement.

  • PDF

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.

수직 행거 내진설계용 스티프너의 단조 압축 실험 (Monotonic Loading Tests on Seismic Stiffeners for Vertical Hangers)

  • 오창수;공하성
    • 대한안전경영과학회지
    • /
    • 제25권2호
    • /
    • pp.187-192
    • /
    • 2023
  • In piping systems, trapeze hangers are subjected to vertical and horizontal seismic loads and stiffeners are used. In this study, monotonic compression tests were conducted with the removable stiffeners using three variables: stiffener clamp fixing position, section length, and installation direction. The maximum load reinforced with stiffeners could withstand a compressive load of 11kN by applying a safety factor of 10%. It could be estimated that the fixing clamp spacing or the length of shape and load had a proportional relationship. And the stiffener must be fixed in the direction of the strong axis on hinge parts. Also the stiffener buckiling load design proposes to use a method of calculate the flexural buckling compressive strength of and unreinforced full threaded bolt.