• Title/Summary/Keyword: seismic section

Search Result 511, Processing Time 0.027 seconds

Horizontal Distance Correction of Single Channel Marine Seismic Data (단일 채널 해양 탄성파탐사 자료의 수평거리 보정)

  • Kim Hyun-Do;Kim Jin-Hoo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • Horizontal-axes on the seismic section have been represented in a distance unit by applying horizontal-distance correction transformation on a 2-D seismic section of single channel marine seismic data. By drawing horizontal-axes in a distance unit, distortion of horizontal distances shown on the seismic section when the ship speed varies during a survey can be diminished considerably. Position information obtained by GPS and stored in each trace of seismic data as well as data collection windows were used for horizontal distance correction. The minimum window length was decided by considering ship speed and shot interval, and the maximum window length wat determined by reflecting radius of the 1st Fresnel zone. In choosing an optimum window length, horizontal resolution and stacking effect were considered simultaneously. By applying horizontal distance correction we could get a 2-D seismic section which is considered at reflecting the real subsurface structure analogously.

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

Optimum Seismic Design of Reinforced Concrete Piers Considering Economy and Constructivity (내진설계시 경제성 및 시공성을 고려한 RC 교각의 최적설계)

  • 조병완;김영진;윤은이
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.479-484
    • /
    • 2000
  • In this study, optimal design of reinforced concrete piers under seismic load is numerically investigated. Object function is the area of the concreate-section. Design variables are the total area of reinforcement and concrete-section dimension(Circular section diameter). Constraints of the design strength of the column, longitudinal reinforcement ratio and lower and upper bounds on the design variables are imposed. The reinforcement concrete column is analysed and designed by the Ultimated Strength Design method and load combination involving dead, live, wind and seismic load is used. For numerical optimization, ADS(Garret N, Vanderplaats_ routine is used. From the result of numerical examples, the concrete-section dimension was reduced, but longitudinal reinforcement was not changed. The results show that confinement reinforcement was reduced and confinement reinforcement spacing is increased. The higher strength of reinforcement used, the more concrete-section area was reduced.

  • PDF

Nonlinear Behavior Characteristics and Seismic Performance of the Existing RC Piers without Seismic Detailing (비내진 상세 기존 RC 교각의 비선형 거동특성 및 내진성능)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.327-334
    • /
    • 2000
  • The seismic performance evaluation of the existing non-seismic detailed RC piers has risen as urgent task for rational and cost-effective seismic retrofitting works as well as development of new seismic design concept. The scale model test has been conducted to investigate nonlinear behavior characteristics and the seismic performance of existing piers with lap-spliced longitudinal reinforcements in the plastic hinge zone which are of the solid circular and the hollow rectangular section. The lap splice in this zone is found to cause premature bond failure. The experimental results show very poor seismic performance of circular section pier but relatively large ductility of the rectangular one.

  • PDF

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

Seismic Fragility Analysis of Curved Bridge Structure by Girder Section Shape (거더 단면형상 변화에 따른 곡선교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.626-633
    • /
    • 2019
  • Purpose: The primery objecting of this paper is to explore the seismics fragility of curved bridge based on the change of girder section. Method: The cross section of the bridge structure was constructed with I, T, and Box shapes and then, in order to perform the seismic fragility 24 seismic ground motions were used, including Gyeongju Pohang Earthquake. Result: Fist, T-Shape of the bridge strucrue was much fragility in terms of the stress on girder section, in comparison to the other shapes. The seismic fragilies of the structures with respect to displacement(drift ratio), however, were shown simialr. Conclusion: In other to wvaluation the seismic fragility of curved structure using different girder shapes, analytical models of the structure were constructed and then, the probability failure of box-shape girder was shown lower probability. In further, Parametric studies of curved structures must be conducted.

Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools

  • Eswaran, M.;Reddy, G.R.;Singh, R.K.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.779-799
    • /
    • 2015
  • The slosh height and the possibility of water spill from rectangular Spent Fuel Storage Bays (SFSB) and Tray Loading Bays (TLB) of Nuclear power plant (NPP) are studied during 0.2 g, Safe Shutdown Earthquake (SSE) level of earthquake. The slosh height obtained through Computational Fluid dynamics (CFD) is compared the values given by TID-7024 (Housner 1963) and American concrete institute (ACI) seismic codes. An equivalent amplitude method is used to compute the slosh height through CFD. Numerically computed slosh height for first mode of vibration is found to be in agreement the codal values. The combined effect in longitudinal and lateral directions are studied separately, and found that the slosh height is increased by 24.3% and 38.9% along length and width directions respectively. There is no liquid spillage under SSE level of earthquake data in SFSB and TLB at convective level and at free surface acceleration data. Since seismic design codes do not have guidelines for combined excitations and effect of higher modes for irregular geometries, this CFD procedure can be opted for any geometries to study effect of higher modes and combined three directional excitations.

Seismic Performance Evaluation of Welded Beam-Column Connections abricated with SHN Steel Sections (SHN 형강 보-기둥 접합부의 내진성능 평가)

  • Kim, Tae Jin;Park, JongWon;Cho, Jeong Hyuk;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.829-838
    • /
    • 2008
  • In this study, cyclic tests of beam-column connections composed with members applicable to the domestic low-middle rise steel buildings were conducted to develop seismic connection details and its evaluation. Connection types and material properties of the steel were testing variables and the difference between the newly developed seismic rolled section (SHN490) and existing rolled section (SM490) was also investigated. Distributions of the yield strength and the ultimate strength of the SHN490 rolled section were relatively uniform comparing to those of the SM490 rolled section Brittle fracture in the weldments of the test specimens was not observed. Instead, fracture occurred at heat-affected zones or the stress-concentrated point near the weld access hole of the beam flanges. In the case of identical rolled-section specimens, the rotational capacity and dissipated energy of the WUF-W connection was larger than those of the WUF-B connection. In the case of identical connection types, the rotational capacity and dissipated energy of the SHN490 section connection was larger than those of the WUF-B section connection.

Evaluation of Ductility for Bridge Piers Retrofitted by Stainless Steel Wire Mesh (스테인레스 스틸 와이어 메쉬 보강에 따른 교각의 연성능력 평가)

  • 김성훈;김대곤;이규남;김선호;김석희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.879-884
    • /
    • 2002
  • The objective of this study is to investigate the seismic capacity of the non-seismically detailed RC bridge piers before and after applying a seismic retrofitting method using stainless steel wire mesh. Total nine circular section RC piers were constructed. Different lap splice longitudinal reinforcement details were adapted for four specimens and various types of stainless steel wire mesh were applied for the remaining five specimens. Harmonic cyclic lateral load was applied on each specimen under a constant axial load. The test results indicated that the existing circular piers have low seismic capacity while the stainless steel wire mesh retrofitting method improves the seismic capacity considerably. In addition, test results revealed that the circular section piers could have a considerable amount of ductility if longitudinal bars are not lap-spliced in potential plastic hinge zone. Based on this experimental study it could be concluded that the seismic performance, that is ductility and energy absorption capacity, of the non-seismically detailed RC bridge piers would be increased by applying the stainless steel wire mesh seismic retrofitting method.

  • PDF