• 제목/요약/키워드: seismic retrofit of framed buildings

검색결과 4건 처리시간 0.016초

Comparative study of the seismic response of RC framed buildings retrofitted using modern techniques

  • Mazza, Fabio
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.29-48
    • /
    • 2015
  • The main purpose of this work is to compare different criteria for the seismic strengthening of RC framed buildings in order to find the optimal combinations of these retrofitting techniques. To this end, a numerical investigation is carried out with reference to the town hall of Spilinga (Italy), an RC framed structure with an L-shaped plan built at the beginning of the 1960s. Five structures are considered, derived from the first by incorporating: carbon fibre reinforced polymer (FRP)-wrapping of all columns; base-isolation, with high-damping-laminated-rubber bearings (HDLRBs); added damping, with hysteretic damped braces (HYDBs); FRP-wrapping of the first storey columns combined with base-isolation or added damping. A three-dimensional fibre model of the primary and retrofitted structures is considered; bilinear and trilinear laws idealize, respectively, the behaviour of the HYDB, providing that the buckling be prevented, and the FRP-wrapping, without resistance in compression, while the response of the HDLRB is simulated by using a viscoelastic linear model. The effectiveness of the retrofitting solutions is tested with nonlinear dynamic analyses based on biaxial accelerograms, whose response spectra match those in the Italian seismic code.

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

유공강판의 횡력저항능력에 대한 실험적 연구 (Experimental Study on the Characteristics of the Lateral Load Resistance of Perforated Steel Plates)

  • 박정아;이영욱
    • 대한건축학회논문집:구조계
    • /
    • 제36권5호
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, an experimental research was performed to find the characteristics of the lateral load resistance of perforated steel plates which could be developed to retrofit existing RC framed buildings. The Specimens are tested with variables such as aspect ratio of plate, the ratio of perforation area, and the ratio of perforated diameter to strip which is more than 0.6. The lateral load was applied with displacement control until to reach 3.5% drift ratio. Through the experimental results, it was shown that the maximum strength of all specimens were reached at around 0.5% drift ratio and maintained until 3.5% drift ratio. From results, the modified strength prediction formula was derived with the variable ratio of the perforated diameter to strip. To evaluate seismic retrofit performance of RC frames using perforated steel plate, a simple design process was presented.

토글 가새-고집적 마찰댐퍼를 설치한 철근콘크리트 모멘트 골조의 성능 평가 (Seismic Behavior of Reinforced Concrete Moment Frames Retrofitted by Toggle Bracing System with High Density Friction Damper)

  • 한상환;김지영;문기훈;이창석;김형준;이강석
    • 한국지진공학회논문집
    • /
    • 제18권3호
    • /
    • pp.133-140
    • /
    • 2014
  • The friction damper can be used for improving the seismic resistance of existing buildings. The damper is often installed in bracing members. The energy dissipation capacity of the damping systems depends on the type of the structure, the configuration of the bracing members, and the property of dampers. In Korea, there are numerous low- to mid-rise reinforced concrete moment frames that were constructed considering only gravity loads. Those frames may be vulnerable for future earthquakes. To resolve the problem, this study developed a toggle bracing system with a high density friction damper. To investigate the improvement of reinforced concrete frames after retrofit using the developed damped system, experimental tests were conducted on frame specimens with and without the damped system. The results showed that the maximum strength, initial stiffness and energy dissipation capacity of the framed with the damped system were much larger than those of the frame without the damped system.