• 제목/요약/키워드: seismic retrofit

검색결과 385건 처리시간 0.029초

Experimental assessment of post-earthquake retrofitted reinforced concrete frame partially infilled with fly-ash brick

  • Kumawat, Sanjay R.;Mondal, Goutam;Dash, Suresh R.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.121-135
    • /
    • 2022
  • Many public buildings such as schools, hospitals, etc., where partial infill walls are present in reinforced concrete (RC) structures, have undergone undesirable damage/failure attributed to captive column effect during a moderate to severe earthquake shaking. Often, the situation gets worsened when these RC frames are non-ductile in nature, thus reducing the deformable capability of the frame. Also, in many parts of the Indian subcontinent, it is mandatory to use fly-ash bricks for construction so as to reduce the burden on the disposal of fly-ash produced at thermal power plants. In some scenario, when the non-ductile RC frame, partially infilled by fly-ash bricks, suffers major structural damage, the challenge remains on how to retrofit and restore it. Thus, in this study, two full-scale one-bay, one-story non-ductile RC frame models, namely, bare frame and RC partially infilled frame with fly-ash bricks in 50% of its opening area are considered. In the previous experiments, these models were subjected to slow-cyclic displacement-controlled loading to replicate damage due to a moderate earthquake. Now, in this study these damaged frames were retrofitted and an experimental investigation was performed on the retrofitted specimens to examine the effectiveness of the proposed retrofitting scheme. A hybrid retrofitting technique combining epoxy injection grouting with an innovative and easy-to-implement steel jacketing technique was proposed. This proposed retrofitting method has ensured proper confinement of damaged concrete. The retrofitted models were subjected to the same slow cyclic displacement-controlled loading which was used to damage the frames. The experimental study concluded that the hybrid retrofitting technique was quite effective in enhancing and regaining various seismic performance parameters such as, lateral strength and lateral stiffness of partially fly-ash brick infilled RC frame. Thus, the steel jacketing retrofitting scheme along with the epoxy injection grouting can be relied on for possible repair of the structural members which are damaged due to the captive column effect during the seismic shaking.

다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교 (Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges)

  • 최은수;김이현;박주남;조효남
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.587-597
    • /
    • 2007
  • 강케이블 변위제어장치는 미국 캘리포니아주에서 프레임 구조 교량의 낙교를 방지하는데 효과적인 것으로 지난 몇 차례의 지진에서 밝혀졌다. 이러한 효과를 바탕으로, 미국 중부의 다경간 단순지지 교량에 강케이블을 적용할려는 시도가 행해지고 있다. 또한, 형상기억합금의 인장거동을 이용한 변위제어장치가 동일한 적용을 위해서 연구되고 있다. 프레임 구조교량에서는 변위제어장치가 교각에 힘을 전달하지만, 다경간 단순지지 교량에서는 교대에 힘을 전달하게 된다. 따라서 이러한 교량에서는 교대의 거동을 동시에 점검해야한다. 본 연구에서는 다경간 단순지지 교량에 대한 세 가지의 변위제어장치의 성능을 비교하였다. 강케이블, 인장거동 형상기억합금 봉 및 휨거동 형상기억합금 봉을 이용한 변위제어장치의 중진 및 강진에 대한 변위제어성능 및 교대에 미치는 영향을 분석하였다. 이를 위해서 형상기억합금 봉의 휨 실험 및 해석모델을 제시하였다. 또한, 비선형 시간이력해석을 수행하여 원래의 교량과 보강된 교량의 거동을 비교하여 변위제어장치의 성능 및 영향을 파악하였다. 인장거동의 형상기억합금 봉은 내부힌지에서 열림의 상대변위를 제어하는데 가장 우수한 성능을 보여주었으나, 교대의 능동변위를 증가시켜 손상을 발생시켰다. 따라서 강진에 대해서는 변위제어장치를 설치하는 경우 교대의 능동거동에 대한 보강이 요구된다.

비탄성 정적해석을 이용한 격자강판 전단벽 보강 RC구조물의 내진성능평가 (Seismic Performance Evaluation of RC Structure Strengthened by Steel Grid Shear Wall using Nonlinear Static Analysis)

  • 박정우;이재욱;박진영;이영학;김희철
    • 한국전산구조공학회논문집
    • /
    • 제26권6호
    • /
    • pp.455-462
    • /
    • 2013
  • 최근에 지어진 건축물의 경우 지진에 대한 안전성을 확보하고 있지만, 내진설계 도입 이전의 건축물은 지진에 대해 매우 취약하다. 본 연구에서는 내진성능이 부족한 기존 저층 RC구조물의 지진 발생 시 안전성 확보를 위한 내진보강 방안으로 격자강판 전단벽을 제안하고 내진성능평가를 수행하였다. 횡력저항요소로 사용된 격자강판 전단벽의 탄소성 이력특성값은 실험결과를 토대로 횡력저항 기여도등을 평가하여 작성된 이선형곡선을 적용하였다. 비탄성 정적해석을 통해 대상구조물의 성능점을 찾아내어 적용 지진하중에 대한 응답과 성능수준을 평가하였다. 격자강판 전단벽을 적용한 경우, 보강 전에 비하여 응답변위가 약 42% 저감되는 것을 확인할 수 있었으며, 성능점에서 거의 탄성거동을 보여주고 있어 목표성능인 인명안전수준을 만족시켰다. 또한 반응수정계수를 산정하여 내진보강 효과를 검증하였으며, 보강 전과 후에 각각 2.17에서 3.25로 증가하여 설계기준을 초과하였다. 따라서 격자강판 전단벽에 의해 대상 구조물의 강도 및 강성보강이 적절히 수행된 것으로 판단된다.

이력댐퍼를 이용한 기존 RC구조물의 내진보강 (Seismic Retrofit of Existing RC Structure Using Hysteretic Dampers)

  • 최선영
    • 전산구조공학
    • /
    • 제26권2호
    • /
    • pp.37-42
    • /
    • 2013
  • 준공 후 상당한 시간이 지나 내진설계가 되지 않았거나 내진상세가 이루어지지 않은 건물의 부족한 내진성능을 보완하기 위한 방법의 하나로 좌굴이 제한된 가새형 댐퍼를 적용할 수 있다. 이 방법을 적용할 경우, 기존 내진보강법의 불확실성을 줄일 수 있었음에도 불구하고, 댐퍼의 설계과정이 복잡하여 실무에 적용하기 어려웠다. 그러나 본 원고에서는 강성과 강도개념을 적용한 댐퍼의 설계법을 적용함으로써, 실무에서 쉽게 적용할 수 있도록 하였다. 준공된 지 16년이 지난 비틀림 비정형 건물에 대한 내진성능을 평가한 후, 가새형 댐퍼로 보강한 결과는 다음과 같다. (1) 일방향해석결과 나타난 골조별 하중-지붕변위의 관계를 이용하여, 연약골조의 강성을 강한 골조의 강성과 일치시키고, 이 강성비로부터 댐퍼가 부담하는 최적의 내력비율을 정하여 내진보강을 수행한 결과, 가새를 설치한 방향으로는 가새형댐퍼가 비틀림 방지와 연성증대효과를 구조물에 부여하여 성능이 획기적으로 증가하였다. 또한, 그 가새의 직각방향 하중에 대해서도 가새를 설치함으로써 비틀림 강성이 증가하고, 가새와 코어벽체가 인장과 압축으로 횡력에 저항하여 횡저항 성능이 증가하였다. (2) 내진성능이 부족한 비틀림 비정형 건물의 내진성능을 증진시키기 위해 가새형 댐퍼를 적용함에 있어, 댐퍼의 강성을 이용하여 구조체의 비틀림 거동을 최소화하고, 연성을 증진시키는 방법을 체택할 경우, 실무자들이 보다 쉽게 적용할 수 있으면서 그 효과도 상당히 클 것으로 기대된다.

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

Seismic response of RC structures rehabilitated with SMA under near-field earthquakes

  • Shiravand, M.R.;Khorrami Nejad, A.;Bayanifar, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.497-507
    • /
    • 2017
  • During recent earthquakes, a significant number of concrete structures suffered extensive damage. Conventional reinforced concrete structures are designed for life-time safety that may see permanent inelastic deformation after severe earthquakes. Hence, there is a need to utilize adequate materials that have the ability to tolerate large deformation and get back to their original shape. Super-elastic shape memory alloy (SMA) is a smart material with unique properties, such as the ability to regain undeformed shape by unloading or heating. In this research, four different stories (three, five, seven and nine) of reinforced concrete (RC) buildings have been studied and subjected to near-field ground motions. For each building, two different types of reinforcement detailing are considered, including (1) conventional steel reinforcement (RC frame) and (2) steel-SMA reinforcement (SMA RC frame), with SMA bars being used at plastic zones of beams and steel bars in other regions. Nonlinear time history analyses have been performed by "SeismoStruct" finite element software. The results indicate that the application of SMA materials in plastic hinge regions of the beams lead to reduction of the residual displacement and consequently post-earthquake repairs. In general, it can be said that shape memory alloy materials reduce structural damage and retrofit costs.

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • 제3권1호
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

가력하중을 통한 CST30제진댐퍼시스템의 구조성능 평가 (Structural Performance Evaluation of VES Damper System subjected to Cyclic Loadings(CST30))

  • 김대훈;이동규;이기학
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.61-68
    • /
    • 2015
  • The performance enhancement of various structural building systems from natural hazards has become an inctreasingly important issue in engineering field. In this paper, visco-elastic(VE) CST30 damping systems were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. Main test variables are relative shear stiffness, rate of loading frequency, and thickness of specimens to evaluate the seismic capacity based on the performance criteria. This experiment was performed using a total of 12 specimens, subjected to cyclic loadings up to a shear deformation of 500%. All the CST30 dampers provided a ductile and stable hysterestic behavior when subjected to the demands of large shear stiffness and different loading frequencies. The test results showed that the CST30 dampers are an effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings.

Retrofitting of steel pile-abutment connections of integral bridges using CFRP

  • Mirrezaei, Seyed Saeed;Barghian, Majid;Ghaffarzadeh, Hossein;Farzam, Masood
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.209-226
    • /
    • 2016
  • Integral bridges are typically designed with flexible foundations that include one row of piles. The construction of integral bridges solves difficulties due to the maintenance of expansion joints and bearings during serviceability. It causes integral bridges to become more economic comparing with conventional bridges. Research has been focused not only to enhance the seismic performance of newly designed bridges, but also to develop retrofit strategies for existing ones. The local performance of the pile to abutment connection will have a major effect on the performance of the structure and the embedment length of pile inside the abutment has a key role to provide shear and flexural resistance of pile-abutment connections. In this paper, a simple method was developed to estimate the initial value of embedment length of the pile for retrofitting of specimens. Four specimens of pile-abutment connections were constructed with different embedment lengths of pile inside the abutment to evaluate their performances. The results of the experimentation in conjunction with numerical and analytical studies showed that retrofitting pile-abutment connections with CFRP wraps increased the strength of the connection up to 86%. Also, designed connections with the proposed method had sufficient resistance against lateral load.

친환경 요소와 구조 요소를 이용한 학교 시설물의 입면개선 연구 (Research on the Facade Improvement of the Educational Facility Using Environmentally Friendly and Structural Factors)

  • 권오빈;김성식;김재온;손재호
    • 교육시설
    • /
    • 제17권1호
    • /
    • pp.3-11
    • /
    • 2010
  • Educational environments in rural areas have been slowly deteriorating due to the popular flow of people moving into the city from the countryside. It has been concluded that superannuated educational facilities have a negative influence towards students. This research has been conducted in order to give better mental or psychological influence to those around and comfort and relaxation to the students themselves through developing new ways to renovate the $fa\c{c}ade$ of the run down educational facility. This research develops several structural and ecological (environmental friendly) elements which are used as several segmental elements of the new $fa\c{c}ade$ design for the degraded educational facilities. A combination of these design elements can develop many viable alternatives of a new $fa\c{c}ade$ renovation. These new renovations can help students to maintain their educational and social lives in a safer and more ecological environment.