• 제목/요약/키워드: seismic responses

검색결과 963건 처리시간 0.02초

응답 스펙트럼의 평균과 분산, 상관관계를 모두 고려한 지반운동 선정 방법 - II 지진 응답 (A Method for Selecting Ground Motions Considering Target Response Spectrum Mean, Variance and Correlation - II Seismic Response)

  • 하성진;한상환
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.63-70
    • /
    • 2016
  • This study is the sequel of a companion paper (I. Algorithm) for assessment of the seismic performance evaluation of structure using ground motions selected by the proposed algorithm. To evaluate the effect of the correlation structures of selected ground motions on the seismic responses of a structure, three sets of ground motions are selected with and without consideration of the correlation structure. Nonlinear response history analyses of a 20-story reinforced concrete frame are conducted using the three sets of ground motions. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.

면진시험구조물의 수평가진응답을 활용한 면진장치 비선형 해석모델개발 (Nonlinear Analysis Model Development of Seismic Isolator Using Horizontal Seismic Excitation Responses of Isolated Test Structure)

  • 이재한;구경희;유봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.157-165
    • /
    • 2002
  • The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structural modeling of the isolated structure and isolation bearing. Based on the actual dynamic behaviors and the seismic responses of the test model, linear and bilinear models for isolators are suggested. Seismic analyses are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of isolators.

  • PDF

Impact of shear wall design on performance and cost of RC buildings in moderate seismic regions

  • Mahmoud, Sayed;Salman, Alaa
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.489-503
    • /
    • 2021
  • This research aims to investigate the seismic response of RC shear wall buildings of 5-, 6-, 7-, 8-, 9-, and 10-story designed as conventional and ductile and located in moderate seismic zone in Saudi Arabia in accordance with the seismic provisions of the American code ASCE-7-16. Dynamic analysis is conducted using the developed models in ETABS and the design spectra of the selected zone. The seismic responses of a number of design variations are evaluated in terms of story displacements, drift, shear and moments of both conventional and ductile building models as performance measures and presented comparatively. In addition, pushover analysis is also performed for the lowest and highest building models. Cost estimate of ductile and conventional walls is evaluated and compared to each other in terms of weight of reinforcement bars. In addition, due to the complexity of design and installation of ductile shear walls, sensitivity analysis is performed as well. It is observed that conventional design considerably increases induced seismic responses as well as cost compared to ductile one.

모드의 방향이 불분명한 건축구조물의 지진해석 (Seismic Analysis of Building Structures with Ambiguous Modal Direction)

  • 김태호;이동근;김대곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.513-520
    • /
    • 2002
  • This study is for seismic analysis of building structures with ambiguous modal direction This case is revealed symmetrical building structure or the structure that isn't coincided building axis with physical axis. Seismic analysis-time history analysis, response spectrum analysis and lateral force procedure-is carried out. It is concluded that analysis method for the structure with ambiguous modal direction don't suitable for lateral force procedure. It is recommended to use the CQC method for combining modal responses to the individual components and the SRSS rule for combining responses to the two horizontal components are of nearly equal intensities.

  • PDF

지진위험도평가 방법을 이용한 내진성능관리 의사결정 (Decision Making of Seismic Performance Management Using Seismic Risk Assessment)

  • 김동주;최지혜;김병화
    • 한국지진공학회논문집
    • /
    • 제23권6호
    • /
    • pp.329-339
    • /
    • 2019
  • The strategy for the management of earthquakes is shifting from post recovery to prevention; therefore, seismic performance management requires quantitative predictions of damage and the establishment of strategies for initial responses to earthquakes. Currently, seismic performance evaluation for seismic management in Korea consists of two stages: preliminary evaluation and detailed evaluation. Also, the priority of seismic performance management is determined in accordance with the preliminary evaluation. As a deterministic method, preliminary evaluation quantifies the physical condition and socio-economic importance of a facility by various predetermined indices, and the priority is decided by the relative value of the indices; however, with the deterministic method it is difficult to consider any uncertainty related to the return-year, epicenter, and propagation of seismic energy. Also this method cannot support tasks such as quantitative socio-economic damage and the provision of data for initial responses to earthquakes. Moreover, indirect damage is often greater than direct damage; therefore, a method to quantify damage is needed to enhance accuracy. In this paper, a Seismic Risk Assessment is used to quantify the cost of damage of road facilities in Pohang city and to support decision making.

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

Inelastic seismic response of adjacent buildings linked by fluid dampers

  • Xu, Y.L.;Yang, Z.;Lu, X.L.
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.513-534
    • /
    • 2003
  • Using fluid dampers to connect adjacent buildings for enhancing their seismic resistant performance has been recently investigated but limited to linear elastic adjacent buildings only. This paper presents a study of inelastic seismic response of adjacent buildings linked by fluid dampers. A nonlinear finite element planar model using plastic beam element is first constructed to simulate two steel frames connected by fluid dampers. Computed linear elastic seismic responses of the two steel frames with and without fluid dampers under moderate seismic events are then compared with the experimental results obtained from shaking table tests. Finally, elastic-plastic seismic responses of the two steel frames with and without fluid dampers are extensively computed, and the fluid damper performance on controlling inelastic seismic response of the two steel frames is assessed. The effects of the fundamental frequency ratio and structural damping ratio of the two steel frames on the damper performance are also examined. The results show that not only in linear elastic stage but also in inelastic stage, the seismic resistant performance of the two steel frames of different fundamental frequencies can be significantly enhanced if they are properly linked by fluid dampers of appropriate parameters.

면진된 집중질량 보 모델의 지진응답해석 (Seismic Response Analysis of a Isolated Lumped-Mass Beam Model)

  • 이재한;구경회
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.561-568
    • /
    • 2001
  • For obtaining the time history nodal responses of reactor building, a lumped-mass beam model composed of two sticks for the reactor building and the reactor support structure is developed. The time history responses for the non-isolated and isolated reactor buildings are calculated under an artificial time history, generated using the seismic spectrum curve of US NRC RG1.60. The analysis results show that the horizontal accelerations of the isolated building are dramatically decreased to one-tenths of the non-isolated one, but the vertical responses are increased by about 40%.

  • PDF

면진된 KALIMER 원자로 구조물의 내진설계 및 지진해석 (Seismic Design and Analysis of Seismically Isolated KALIMER Reactor Structures)

  • 이형연
    • 한국지진공학회논문집
    • /
    • 제3권1호
    • /
    • pp.75-92
    • /
    • 1999
  • 본 연구에서는 현재 국내에서 면진설계를 적용하여 개발중인 KALIMER(Korea Advanced Llquid Metal Reactor) 액체금속로에 대한 내진설계 및 지진해석을 위하여 핵심구조물인 원자로구조물에 대한 단순 지진해석모델을 개발하였다 이를 이용하여 면진설계의 경우와 비면진 설계의 경우에 대한 동특성분석과 시간이력 지진해석을 수행하여 비교평가하였다. 또한 ASME 설계코드에 따른 응력한계요건을 검토하기 위하여 등가 지진응력해석을 수행하고 이로부터 내진여유도를 계산하였다 지진안전성에 대한 하나의 지표로서 원자로 구조물이 견딜수 있는 최대지진하중을 결정하기 위한 한계지진하중(Limit seismic load)을 저의하였다 지진해석결과 면진된 KALIMER 원자로구조믈은 비면진된 경우에 비하여 가속도응답과 구조물간의 상대변위응답이 현저히 감소하였고 충분한 내진여유도로 인하여 한계지진하중이 0.8g로 나타났다.

  • PDF