• 제목/요약/키워드: seismic response assessment

검색결과 304건 처리시간 0.029초

사장교의 내진 손상지수의 제안 및 손상도 평가 (Seismic Damage Index Proposal and Damage Assessment for Cable-Stayed Bridge)

  • 김응록
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.127-135
    • /
    • 2018
  • 최근 국내에서의 잦은 지진 발생으로 지진에 대한 관심이 증가함에 따라 이에 대한 해석법 및 손상도를 평가하는 여러 가지 방법이 제시되고 있다. 그러나 해석 및 손상도를 평가함에 있어 각각의 부재에 대한 변위와 부재력 뿐 아니라 실제 발생하는 지지에 대하여 구조물의 손상고를 정량적으로 평가하기에는 기준 및 방법이 미비한 실정이다. 따라서 본 논문에서는 케이블지지 교량인 사장교를 대상으로 실제지진하중 및 여러 가지 형태의 지진파에 대하여 지진해석을 수행하고 그 결과를 바탕으로 손상도 평가방법을 제시하였다. 손상지수는 사장교의 주탑 기울기를 기반으로 산정하였으며 물리적 내진손상 특성은 각각 A, B, C, D 레벨의 4단계로 제안하였다. 또한 지진해석방법에 따라 내진 손상지수가 항상 크거나 또는 작게 나온다고 단순하게 판단 할 수는 없었으며 본 연구는 사장교를 대상으로 하여 내진 손상지수의 제안 및 손상도 평가를 수행한 것이나 지진하중 하에서 비슷한 최대 변위응답 특성을 보이는 구조물에도 확장하여 적용할 수 있으리라 생각된다.

근거리지진에서 장주기사장교의 신뢰성평가 (Reliability Assessment of Long-Period Cable-Stayed Bridges on Near Fault Earthquake(NFE))

  • 방명석
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.44-48
    • /
    • 2012
  • The seismic safety of long-period cable-stayed bridges is assessed by probabilistic finite element analysis and reliability analysis under NFE. The structural response of critical members of cable-stayed bridges is evaluated using the developed probabilistic analysis algorithm. In this study, the real earthquake recording(Chi-Chi Earthquake; 1997) was selected as the input NFE earthquake for investigating response characteristics. The probabilistic response and reliability index shows the different aspect comparing the result from FFE earthquake. Therefore, the probabilistic seismic safety assessment on NFE earthquakes should be performed for the exact evaluation of long-period cable-stayed bridges and the earthquake resistant design criteria should be complemented.

횡방향철근 상세에 따른 원형기둥의 내진성능 (Seismic Performance of Circular Columns considering Transverse Steel Details)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.259-266
    • /
    • 2000
  • This study was conducted to investigate the seismic behavior assessment of circular reinforcement concrete bridge piers particularly with regard to assessing the displacement ductility curvature ductility response modification factor(R) and plastic hinge region etc, The experimental variables of bridge piers test consisted of transverse steel details amount and spacing different axial load levels etc. The test results indicated that reinforcement concrete bridge piers with confinement steel by the code specification exhibited suffcient ductile behavior and seismic performance. Also it is found that current seismic design code specification of confinement steel requirements may be revised.

  • PDF

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

연약지반상 지진하중을 고려한 철도노반의 안정성 검토에 관한 연구 (A study on the Stability of Rail way Construction on the Reclaimed Land for Domestic Marine Clay Using the Seismic Analysic)

  • 김영수;김무일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1071-1076
    • /
    • 2004
  • The purpose. in this study. is to analyze liquefaction potential of Inchon International Airport at the Area Phase ' I ' for Railway Construction of all, seismic response was analyzed using the computer program, Shake91. Four methods proposed by Seed & Idriss. Eurocode, Iwasaki & Tatsuoka. and Ishihara were used for assessment of liquefaction potential and safety factors calculated form these methods are compared. Based on the results of seismic response analysis, the maximum acceleration at the ground surface is larger than that evaluated site factor effect by using site factor because these areas are composed of very loose sand clay. Especially, in the case of analysis with long period earthquake data. it is appeared that the acceleration of earthquake is amplified more largely. Therefore, accurate seismic response analysis is suggested for the design on the important structures on reclaimed land. The analytical results of liquefaction potential show that the increments of N-value and effective overburden pressure with remediation make safety factors increase. Through comparing the safety factors evaluated from four method, the safety factor calculated by See & Idriss method in the lowest one and it is found that the SPT N-value effect the safety factor very largely. And, Iwasaki & Tatsuoka method is affected by various factors such as average grain size. fine contents, confining pressure. In conclusion. to minimize earthquake Risk by liquefaction, the efficient remediation is essential and seismic response analysis should be carride out.

  • PDF

Seismic response of substandard RC frame buildings in consideration of staircases

  • Karaaslan, Ayberk;Avsar, Ozgur
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.283-295
    • /
    • 2019
  • During the seismic performance assessment of existing buildings, staircases are generally not taken into account as structural members but as dead load. Staircases, as secondary structural members, not only serve for connecting successive floors but also provide considerable amount of strength and stiffness to the building which can modify its seismic behaviour considerably. In this parametric study, the influence of staircases on the seismic response of substandard RC frame buildings which differ in number of storey and span, presence of staircase and its position has been examined. Modal Analyses and bi-directional Non-Linear Time History Analyses (NLTHA) were conducted to compare several engineering demand parameters (EDPs) such as inter-storey drift ratio (ISDR), floor accelerations, modal properties, member shear forces and plastic hinge distribution. Additionally, short column effect, variation in shear forces of columns that are attached to the staircase slab, failure and deformation in staircase models have also been investigated. As the staircase was considered in the analytical model, a different damage pattern can be developed especially in the structural components close to staircase.

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

모드기여도를 고려한 복수모드구조물의 지진취약도분석 (Seismic Fragility Analysis of Multi-Modes Structures Considering Modal Contribution Factor)

  • 조양희;조성국
    • 한국지진공학회논문집
    • /
    • 제6권4호
    • /
    • pp.15-22
    • /
    • 2002
  • 이 연구는 원자력발전소 구조물의 확률론적 내진성능을 평가하는 수단으로 이용되고 있는 지진취약도분석 기법에 대하여 소개하고, 지진취약도분석에 입력자료로 제공되는 기본변수의 특성에 대하여 논의하였다. 특히, 지진취약도 분석결과에 지대한 영향을 미칠 수 있는 입력변수의 하나인 응답스펙트럼형태계수의 정의 방법을 개선하였다. 새로운 응답스펙트럼형태계수는 구조물의 고유진동모드별 기여도가 전체 구조응답에 미치는 영향을 고려할 수 있도록 모드별 기여도를 이용하여 표현하였다. 대표적인 원자력발전소 구조물을 대상으로 예제분석을 수행하고, 제안된 응답스펙트럼형태계수의 유용성 및 적용성을 검증하였다. 특히, 이 논문의 방법은 복합모드감쇠특성을 갖는 구조물의 경우에도 효과적으로 적용될 수 있음을 확인하였다.

Study on seismic retrofit of structures using SPSW systems and LYP steel material

  • Zirakian, Tadeh;Zhang, Jian
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.1-23
    • /
    • 2016
  • Steel plate shear walls (SPSWs) have been shown to be efficient lateral force-resisting systems, which are increasingly used in new and retrofit construction. These structural systems are designed with either stiffened and stocky or unstiffened and slender web plates based on disparate structural and economical considerations. Based on some limited reported studies, on the other hand, employment of low yield point (LYP) steel infill plates with extremely low yield strength, and high ductility as well as elongation properties is found to facilitate the design and improve the structural behavior and seismic performance of the SPSW systems. On this basis, this paper reports system-level investigations on the seismic response assessment of multi-story SPSW frames under the action of earthquake ground motions. The effectiveness of the strip model in representing the behaviors of SPSWs with different buckling and yielding properties is primarily verified. Subsequently, the structural and seismic performances of several code-designed and retrofitted SPSW frames with conventional and LYP steel infill plates are investigated through detailed modal and nonlinear time-history analyses. Evaluation of various seismic response parameters including drift, acceleration, base shear and moment, column axial load, and web-plate ductility demands, demonstrates the capabilities of SPSW systems in improving the seismic performance of structures and reveals various advantages of use of LYP steel material in seismic design and retrofit of SPSW systems, in particular, application of LYP steel infill plates of double thickness in seismic retrofit of conventional steel and code-designed SPSW frames.

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.