• Title/Summary/Keyword: seismic response analysis

Search Result 1,721, Processing Time 0.028 seconds

Study on Seismic Performance Evaluation and Verification of Seismic Safety for Power Cable Tunnels (개착식 전력구의 내진성능 평가 및 내진 안전성 검증)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Chung, Gil-young;Park, Kyung-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.439-445
    • /
    • 2020
  • In this paper, the seismic performance evaluation was performed on 100 existing open-cut power cable tunnels, including ones that did not consider seismic design, in order to verify that the government's demand level (seismic special grade, 0.22 g). The results of the seismic performance evaluation show that most of the tunnels have seismic performance of 0.3 to 1 g, satisfying the level of the seismic special grade and securing the seismic safety. Meanwhile, the earthquake response analysis and structural test were performed to verify the validity of the method and the results of the seismic performance evaluation of the tunnels by the response displacement method, and to verify their seismic safety. As a result, the relative displacement due to the response displacement method under the 0.22 g earthquake was conservative than the results of the earthquake response analysis, and the results of load-displacement curves and response modification coefficient calculation by real scale structural tests showed the safety of the tunnels.

Seismic Response Analysis of Dome-Shaped Large Spatial Structures According to TMD Installation (TMD 설치에 따른 돔 형상 대공간 구조물의 지진응답분석)

  • Ku, Seung-Yeon;Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.

Seismic Integrity Analysis of an Electric Distributing Board Using the Response Spectra Analysis Method (응답스펙트럼해석법을 이용한 배전반의 내진건전성 해석)

  • Choi, Young-Hyu;Kim, Soo-Tae;Seol, Sang-Seok;Moon, Sung-Choon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • In this study, a response spectrum analysis of an electric distributing board (EDB) was conducted to investigate seismic integrity in the design stage. For the seismic analysis, the required response spectra of a safe shutdown earthquake with 2% damping (RRS/SSE-2%) specified in GR-63-CORE Zone 4 was used as the ground spectral acceleration input. A finite element method modal analysis of the EDB was also performed to examine the occurrence of resonance within the frequency range of the earthquake response spectrum. Furthermore, static stress caused by deadweight was analyzed. The resultant total maximum stress of the EDB structure was calculated by adding the maximum stresses from both seismic and static loads using the square root of the sum of the squares (SRSS) method. Finally, the structural safety of the EDB was investigated by comparing the resultant total maximum stress with the allowable stress.

Seismic Response Analysis of Steam Turbine-Generator Rotor System (2nd Report, Application of Wavelet Analysis) (증기터빈$\cdot$발전기축계의 지진응답해석 (제2보 : 웨이블렛 해석의 적용))

  • 양보석;김병욱;김용한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.813-821
    • /
    • 1999
  • This paper presents the technique using wavelet analysis to solve the seismic response of a steam turbine-generator rotor system subjected to earthquake excitations. A brief review of the wavelet transform and its discretization, time-frequency representation of the earthquake wave and the seismic response for a rotor system is presented. The Daubechies wavelet has been used for describing the time-frequency characteristics of the input and the response in case of a recorded accelerogram during 1995 Hyogoken Nanbu earthquake. Also, the results in the wavelet domain has been illustrated through comparison with the time domain simulation results.

  • PDF

Development of Response Spectrum Generation Program for Seismic Analysis of the Nuclear Equipment (원자력기기 내진해석응답스펙트럼 생성프로그램 개발)

  • Byun, Hoon-Seok;Kim, Yu-Chull;Lee, Joon-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.755-762
    • /
    • 2004
  • In our country, when the replacement for individual components of equipment in nuclear power plants is required, establishment of individual criteria i.e. Required Response Spectra(RRS) of seismic test/analysis for the component is very difficult because of the absence of Test Response Spectra(TRS) for the individual component to be replaced, from the existing qualification documents. In this case, it is required to perform the structural analysis for the nuclear equipment including the components to be replaced. After the structural analysis, Analysis Response Spectra(ARS) at the point of the component shall be generated and used for seismic test of the component. However, as of today, no standard program authorized for the response spectra generation by using the structural analysis exists in korea. Because of above reason, the STAR-Egs computer program was developed by using the method which calculates directly the expected response spectrum(frequency vs. acceleration type) of the selected points in the nuclear equipment with input spectrum(Required Response Spectra, RRS), based on the dynamic characteristics of the Finite Element(FE) model that is equivalent to the nuclear equipment. The STAR-Egs controls ANSYS/I-DEAS commercial software and automatically extract modal parameters of the FE model. The STAR-Egs calculates response spectrum using the established algorithm based on the extracted modal parameters, too. Reliance on the calculation result of the STAR-Egs was verified through comparison output with the result of MATLAB commercial software based on the identical algorithm. Moreover, actual seismic testing was performed as per IEEE344-1987 for the purpose of program verification by comparison of the FE analysis results.

  • PDF

Dynamic Response Analysis of 200m Honeycomb Lattice Domes by Rise Span Ratio (라이즈 스팬 비에 의한 200m 허니컴 래티스 돔의 동적 응답 분석)

  • Park, Kang-Geun;Chung, Mi-Ja
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.51-61
    • /
    • 2019
  • The objective of this study is to analysis the seismic response of 200m spanned honeycomb lattice domes under horizontal and up-down ground motion of El Centro earthquake. For the analysis of seismic response of the honeycomb lattice domes by rise/span ratio, the time history analysis is used for the estimation of the dynamic response. The low rise lattice dome is less deformed and less stressed than the high rise lattice dome for the earthquake ground motion. The 3-dimensional earthquake response is not significantly different the dynamic response of one directional ground motion. The earthquake response of domes with LRB isolation system is significantly reduced for the asymmetric vertical deformation and the horizontal and vertical accelerations.

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.177-184
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Input ensemble was normalized to be compatible with expected peak ground acceleration. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The time history analysis tended to significantly underestimated the seismic response as compared to response spectrum analysis. Further detailed studies regarding selection and scaling scheme of input ground motions is needed.

  • PDF

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.

Seismic response analysis of embankment dams under decomposed earthquakes

  • Nasiri, Fatemeh;Javdanian, Hamed;Heidari, Ali
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.35-51
    • /
    • 2020
  • In this study, the seismic response analysis of embankment dams was investigated through numerical modeling. The seismic behavior of dams under main earthquake records and wavelet-based records were studied. Earthquake records were decomposed using de-noising method (DNM) and down-sampling method (DSM) up to five levels. In decomposition process, low and high frequencies of the main earthquake record were separated into two signals. Acceleration response, spectral acceleration, and Fourier amplitude spectrum at the crest of embankment dams under different decomposition levels were evaluated. The seismic behavior under main and decomposed earthquake records was compared. The results indicate an acceptable agreement between the seismic responses of embankment dams under wavelet-based decomposed records and main earthquake motions. Dynamic analyses show that the DNM-based decomposed earthquake records have a better performance compared to DSM-based records. DNM-based records up to level 4 and DSM-based records up to level 2 have a high accuracy in assessment of seismic behavior of embankment dams. The periods corresponding to the maximum values of acceleration spectra and the frequencies corresponding to the maximum values of Fourier amplitude spectra of embankment dam crest under main and decomposed records are in good agreement. The results demonstrate that the main earthquake records can be replaced by wavelet-based decomposed records in seismic analysis of embankment dams.