• Title/Summary/Keyword: seismic reliability assessment

Search Result 73, Processing Time 0.027 seconds

Seismic reliability assessment of base-isolated structures using artificial neural network: operation failure of sensitive equipment

  • Moeindarbari, Hesamaldin;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.425-436
    • /
    • 2018
  • The design of seismically isolated structures considering the stochastic nature of excitations, base isolators' design parameters, and superstructure properties requires robust reliability analysis methods to calculate the failure probability of the entire system. Here, by applying artificial neural networks, we proposed a robust technique to accelerate the estimation of failure probability of equipped isolated structures. A three-story isolated building with susceptible facilities is considered as the analytical model to evaluate our technique. First, we employed a sensitivity analysis method to identify the critical sources of uncertainty. Next, we calculated the probability of failure for a particular set of random variables, performing Monte Carlo simulations based on the dynamic nonlinear time-history analysis. Finally, using a set of designed neural networks as a surrogate model for the structural analysis, we assessed once again the probability of the failure. Comparing the obtained results demonstrates that the surrogate model can attain precise estimations of the probability of failure. Moreover, our proposed approach significantly increases the computational efficiency corresponding to the dynamic time-history analysis of the structure.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Reliability assessment of semi-active control of structures with MR damper

  • Hadidi, Ali;Azar, Bahman Farahmand;Shirgir, Sina
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 2019
  • Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.259-278
    • /
    • 2008
  • This paper presents a nonlinear finite element procedure accounting for the effects of geometric as well as material nonlinearities for reinforced concrete bridge piers supported by laminated rubber bearings. Reinforced concrete bridge piers supported by laminated rubber bearings and carrying a cyclic load were analyzed by using a special purpose, nonlinear finite element program, RCAHEST. For reinforced concrete, the proposed robust nonlinear material model captures the salient response characteristics of the bridge piers under cyclic loading conditions and addresses with the influence of geometric nonlinearity on post-peak response of the bridge piers by transformations between local and global systems. Seismic isolator element to predict the behaviors of laminated rubber bearings is also developed. The seismic performance of reinforced concrete bridge piers supported by laminated rubber bearings is assessed analytically. The results show good correlation between the experimental findings and numerical predictions, and demonstrate the reliability and robustness of the proposed analytical model. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of reinforced concrete bridge piers supported by laminated rubber bearings.

Post-seismic assessment of existing constructions: evaluation of the shakemaps for identifying exclusion zones in Emilia

  • Braga, Franco;Gigliotti, Rosario;Monti, Giorgio;Morelli, Francesco;Nuti, Camillo;Salvatore, Walter;Vanzi, Ivo
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.37-56
    • /
    • 2015
  • The Emilia, May-July 2012, earthquake has dramatically highlighted the only the hazards facing the people in insufficiently secured workplaces, but also the socio-economic consequences of interruption of production activities. After the event, in order to guarantee suitable safety levels, the Italian government asked for a generalized seismic retrofit of buildingsaffected by the earthquake under consideration. Considering that Emilia is one of the most industrialized Italian region, the number of the industrial buildings to be verified could however lead to not acceptable resumption of production time. So, with the aim to speed up the recovery, were leaved out from this request the buildings which had undergone a strong enoughshaking without any damage. In practice, the earthquakes were being used as a "test" to evaluate the seismic structural strength. Besides, the Italian government provision specifies also the zones, within which buildings that escaped evident damage are exempt from obligatory checks, and termed "exclusion zones", shall be individuated using the data provided by the Italian National Institute of Geophysics and Volcanology in the form of so-called "shakemaps". Obviously, the precision of such data greatly influences the determination of the exclusions zones and so all the economic issues related to them. Starting from these considerations, the present paper describes an evaluation of the reliability of the procedure of shakemap generation with specific regard to the seismic events that struck the Emilia region on May 20 and 29, 2012.

A Study on the Risk Analysis of the RC Structure Subjected to Seismic Loading (철근콘크리트 구조물의 지진 위험성 분석에 관한 연구)

  • 이성로
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.183-192
    • /
    • 1994
  • Seismic safety of RC structure can be evaluated by numerical analysis considering randomness of earthquake motion and hysteretic behavior of reinforced concrete, which is more rational than determirustic analysis. In the safety assessment of aseismatic structures by the deterministic theory, it is not easy to consider th effects of random variables but the reliability theory and random vibration theory are useful to assess seismic safety with considering random effects. This study aims at the evaluation of sesmic damage and risk of the RC frame structure by stochastic response analysis of hysteretic system and then the calculation stages of the prob ability of failure are presented.

Evaluation of Liquefaction Potential for Soil Using Probabilistic Approaches (확률적 접근방법에 의한 지반의 액상화 가능성 평가)

  • Yi, Jin-Hak;Kwon, O-Soon;Park, Woo-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.313-322
    • /
    • 2006
  • Liquefaction of soil foundation is one of the major seismic damage types for infrastructures. In this paper, deterministic and probabilistic approaches for the evaluation of liquefaction potential are briefly summarized and the risk assessment method is newly proposed using seismic fragility and seismic hazard analyses. Currently the deterministic approach is widely used to evaluate the liquefaction potential in Korea. However, it is very difficult to handle a certain degree of uncertainties in the soil properties such as elastic modulus and resistant capacity by deterministic approach, and the probabilistic approaches are known as more promising. Two types of probabilistic approaches are introduced including (1) the reliability analysis (to obtain probability of failure) for a given design earthquake and (2) the seismic risk analysis of liquefaction for a specific soil for a given service life. The results from different methods show a similar trend, and the liquefaction potential can be more quantitatively evaluated using the new risk analysis method.

Dynamic Response based Reliability Analysis of Structure with Passive Damper - Part 1: Assessment of Member Failure Probability (수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제1편: 부재별 파괴확률 산정)

  • Kim, Seung-Min;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • This study proposes a dynamic reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this dynamic reliability analysis, the failure event is defined as an event that the dynamic response of the structural system exceeds a displacement limit, whereas the conventional reliability analysis method has limitations that do not properly assess the actual time history response of the structure subjected to dynamic loads, such as earthquakes and high winds, by taking the static response into account in the failure event. In this first paper, we discuss the control effect of the viscous damper on the seismic performance of the member-level failure where the failure event of the structural member consists of the union set of time-sequential member failures during the earthquake excitations and the failure probability of the earthquake-excited structural member is computed using system reliability approach to consider the statistical dependence of member failures between the subsequent time points. Numerical results demonstrate that the proposed approach can present a reliable assessment of the control performance of the viscous damper system in comparison with MCS method. The most important advantage of the proposed approach can provide us more accurate estimate of failure probability of the structural control system by using the actual time-history responses obtained by dynamic response analysis.

A Framework for Assessing Seismic Safety Using Reliability Physics (신뢰성물리이론을 이용한 지진위험성평가 방법의 연구)

  • Moo-Sung Jae
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.199-203
    • /
    • 1999
  • A framework for assessing seismic safety is suggested in this paper. The concepts of requirement and achievement are used in this framework. The quantified correlation between requirement and achievement derived from two competing variables results in the unconditional frequency of exceeding a damage level. This framework can be applied to any other external safety assessment of nuclear power plants.

  • PDF

Seismic Test of a 1/2 Scale Model of Wood House with Tiled Roof (기와집 1/2 축소 모델의 지진 실험)

  • Ryu, Hyeuk;Kim, Jae-Kwan;Jeon, Bong-Hee;Kim, Byung-Hyun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.362-367
    • /
    • 2003
  • To improve the reliability of seismic hazard assessment of historic earthquake, shaking table test of a 1/2 scale model of wood house with tiled roof was performed. Scaled model was constructed through rigorous verification process to have quantitative relationship between the intensity of earthquake and damage state. The completed model was mounted on a shaking table and subjected to the dynamic tests. Two kinds of tests were performed: exploratory test and fragility test. The exploratory test was done with low intensity shaking. In the fragility test, the behavior of the model was carefully monitored while increasing the shaking intensity. The construction details of the model are provided and test procedures are reported. Finally important test results are presented and their implications are discussed.

  • PDF