• Title/Summary/Keyword: seismic processing

Search Result 220, Processing Time 0.02 seconds

3-D Seismic Profiling (3차원 탄성파탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.739-744
    • /
    • 1996
  • 'Kite' is a newly developed single-channel seismic imaging system capable of producing high resolution three dimensional images of subbottom geology in one traverse of a survey region. The system consists of a horizontally towed hydrophone array and active source. The hydrophone array is towed axis perpendicular to ship direction and the airgun source at the end of the hydrophone array is excited at timed intervals during the progression. The construction of the three dimensional subbottom image was made simply by using conventional multichannel seismic reflection data processing techniques. Common source shot (CSS) gathers of the hydrophone traces are evaluated using Dix's equation for average interval velocity of each subbottom layer. From the interval velocity profile and the normal consolidation stress condition, values of shear modulus, porosity, and shear velocity are deduced from the chosen values of physical constants. The system has been successfully tested at several locations on the North Atlantic continental shelf.

  • PDF

Case of Geophysical Survey Guideline for Site Investigation of Spent Nuclear Fuel disposal: Focusing on airborne electromagnetic and seismic reflection survey (사용후핵연료 처분시설 부지조사를 위한 물리탐사 수행지침서 작성 사례 : 항공전자탐사와 탄성파 반사법탐사 중심으로)

  • NamYoung Kong;Hagsoo Kim;Yoonsup Moon;Manho Han
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.69-83
    • /
    • 2024
  • Considering importance and specificity, site investigations for deep geological disposal of Spent Nuclear Fuel require stringent quality control, unlike general geotechnical investigations for tunnels and bridges. In this study, we present a case of selecting geophysical survey method for individual site investigation stage and preparing geophysical survey guideline. The proposed geophysical survey guidelines include procedures, considerations, and quality control for exploration planning, data acquisition, data processing, and interpretation. They comprehensively summarize the contents of airborne electromagnetic survey and seismic reflection survey.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.

Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning (머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거)

  • Nam, Ho-Soo;Lim, Bo-Sung;Kweon, Il-Ryong;Kim, Ji-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.168-177
    • /
    • 2020
  • Seabed multiple reflections (seabed multiples) are the main cause of misinterpretations of primary reflections in both shot gathers and stack sections. Accordingly, seabed multiples need to be suppressed throughout data processing. Conventional model-driven methods, such as prediction-error deconvolution, Radon filtering, and data-driven methods, such as the surface-related multiple elimination technique, have been used to attenuate multiple reflections. However, the vast majority of processing workflows require time-consuming steps when testing and selecting the processing parameters in addition to computational power and skilled data-processing techniques. To attenuate seabed multiples in seismic reflection data, input gathers with seabed multiples and label gathers without seabed multiples were generated via numerical modeling using the Marmousi2 velocity structure. The training data consisted of normal-moveout-corrected common midpoint gathers fed into a U-Net neural network. The well-trained model was found to effectively attenuate the seabed multiples according to the image similarity between the prediction result and the target data, and demonstrated good applicability to field data.

Analysis of Modified Impact Echo applying Discrete Wavelet Transform (이산 웨이블릿 변환을 적용한 수정충격반향기법의 해석)

  • 추진호;조성호;황선근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.309-314
    • /
    • 2003
  • Impact Echo method has been successful in detecting a variety of defects in concrete structure. This study has the objectives to show important aspects of applying the Discrete Wavelet Transform(DWT) to signal processing of Modified Impact Echo(ModIE) Measurement systems and to the understanding of the seismic wave propagation. The data of ModIE were processed by DWT and compared with the results of conventional ModIE Analysis. Although it is inconsistent in the evaluated thickness of concrete lining, the DWT provides the features of separation, synthesis and de-noising in the original signal. The application of technique by wavelet was explained numerically with ABAQUS and performed experimentally with a real scale model in this work. Further works on the possible ways for creating new mother wavelet are specially needed for the enhancement of seismic signal analysis.

  • PDF

Damping and frequency changes induced by increasing levels of inelastic seismic demand

  • Aguirre, Diego A.;Montejo, Luis A.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.445-468
    • /
    • 2014
  • The objective in this research is to determine the feasibility of using changes on the dynamic properties of a reinforced concrete (RC) structure to identify different levels of seismic induced damage. Damping ratio and natural frequency changes in a RC bridge column are analyzed using different signal processing techniques like Hilbert Transforms, Random Decrement and Wavelet Transforms. The data used in the analysis was recorded during a full-scale RC bridge column shake table test. The structure was subjected to ten earthquake excitations that induced different levels of inelastic demand on the column. In addition, low-intensity white noises were applied to the column in-between earthquakes. The results obtained show that the use of the damping ratio and natural frequency of vibration as damage indicators is arguable.

EZTOMO CROSSWELL TOMOGRAPHY SOFTWARE SYSTEM UPDATE (EZTOMO 시추공 토모그래피 소프트웨어 시스템 보완)

  • Lee, Doo-Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.69-72
    • /
    • 2008
  • EZTOMO is a crosswell seismic tomography software system. The system has capability of event picking, raytracing, inversion, error analysis, and visualization of the processing results. Waveform of the first arrival signal has been utilized to select the event of the first motion, and uncertainty measured in estimation of the first breaks has been utilized to improve the inversion process.

  • PDF

Utilization of the Internet for Seismic Intensity Map (인터넷을 이용한 진도도 작성)

  • 이희일;지헌철;임인섭;조창수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.23-29
    • /
    • 2003
  • We have developed a Web-based intensity map generation system. We describe here briefly our system that is automatically generating seismic intensity map using the informations afforded by Internet users who actually experience recent earthquake. Whenever internet survey questionnaires, reported from the citizens using the form available through our Web site, are received, the associated ZIP code region is color-coded according to the Modified Mercalli Intensity Scale. As the number of questionnaires is increased, the intensity value of each region divided by ZIP code is averaged and updated automatically. The coverage of acceleration stations is insufficient to map the accurate extent of ground shaking in Korea. So our system will serve as an alternative for much more rapid generation of intensity map than conventional method, such as mailing intensity survey or elaborate manual processing.

  • PDF

Subsurface Geological Structure Using Shallow Seismic Reflection Survey (반사법 탄성파 탐사를 이용한 천부 지질 구조)

  • Kim Gyu-Han;Kong Young-Sae;Oh Jinyong;Lee Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 1999
  • In terms of high resolution, seismic reflection survey is by far the most significant geophysical method applied to define subsurface structure. In shallow seismic reflection survey, it is, however, difficult to obtain high resolution image due to both the wave attenuation in the unconsolidated layer and the existence of source-generated surface waves Therefore, when collecting data, it is imperative to select proper equipments and choose optimum field data acquisition parameters for acquiring high S/N data. In this survey, a small size hammer was used as a low energy source and 40-Hz vertical geophones were used as receivers. Trigger signal was obtained from the hammer starter attached in the aluminum plate and thus it was possible to control the source onset time for the vertical stack. During the field work, a modified standard CMP technique was introduced to achieve the many-fold CMP data effectively. Data processing was conducted by the 'Seismic Unix' which is mounted on PC with a Linux operating system. The main distinctions were the emphasis and detail placed on near-surface velocity analysis and the extra care exercised in muting.

  • PDF

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF