• Title/Summary/Keyword: seismic loss assessment

Search Result 54, Processing Time 0.025 seconds

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: seismic hazard, geotechnical and lifeline aspects

  • Pitilakis, Kyriazis D.;Anastasiadis, Anastasios I.;Kakderi, Kalliopi G.;Manakou, Maria V.;Manou, Dimitra K.;Alexoudi, Maria N.;Fotopoulou, Stavroula D.;Argyroudis, Sotiris A.;Senetakis, Kostas G.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.207-232
    • /
    • 2011
  • The development of reliable earthquake mitigation plans and seismic risk management procedures can only be based on the establishment of comprehensive earthquake hazard and loss scenarios. Two cities, Grevena (Greece) and D$\ddot{u}$zce (Turkey), were used as case studies in order to apply a comprehensive methodology for the vulnerability and loss assessment of lifelines. The methodology has the following distinctive phases: detailed inventory, identification of the typology of each component and system, evaluation of the probabilistic seismic hazard, geotechnical zonation, ground response analysis and estimation of the spatial distribution of seismic motion for different seismic scenarios, vulnerability analysis of the exposed elements at risk. Estimating adequate earthquake scenarios for different mean return periods, and selecting appropriate vulnerability functions, expected damages of the water and waste water systems in D$\ddot{u}$zce and of the roadway network and waste water system of Grevena are estimated and discussed; comparisons with observed earthquake damages are also made in the case of D$\ddot{u}$zce, proving the reliability and the efficiency of the proposed methodology. The results of the present study constitute a sound basis for the development of efficient loss scenarios for lifelines and infrastructure facilities in seismic prone areas. The first part of this paper, concerning the estimation of the seismic ground motions, has been utilized in the companion paper by Kappos et al. (2010) in the same journal.

Post earthquake performance monitoring of a typical highway overpass bridge

  • Iranmanesh, A.;Bassam, A.;Ansari, F.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • Bridges form crucial links in the transportation network especially in high seismic risk regions. This research aims to provide a quantitative methodology for post-earthquake performance evaluation of the bridges. The experimental portion of the research involved shake table tests of a 4-span bridge which was subjected to progressively increasing amplitudes of seismic motions recorded from the Northridge earthquake. As part of this project, a high resolution long gauge fiber optic displacement sensor was developed for post-seismic evaluation of damage in the columns of the bridge. The nonlinear finite element model was developed using Opensees program to simulate the response of the bridge and the abutments to the seismic loads. The model was modified to predict the bent displacements of the bridge commensurate with the measured bent displacements obtained from experimental analysis results. Following seismic events, the tangential stiffness matrix of the whole structure is reduced due to reduction in structural strength. The nonlinear static push over analysis using current damaged stiffness matrix provides the longitudinal and transverse ultimate capacities of the bridge. Capacity loss in the transverse and longitudinal directions following the seismic events was correlated to the maximum displacements of the deck recorded during the events.

Developing fragility curves and loss functions for masonry infill walls

  • Cardone, Donatello;Perrone, Giuseppe
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.257-279
    • /
    • 2015
  • The primary objective of this study is to summarize results from previous experimental tests on laboratory specimens of RC/steel frames with masonry infills, in order to develop fragility functions that permit the estimation of damage in typical non-structural components of RC frame buildings, as a function of attained peak interstory drift. The secondary objective is to derive loss functions for such non-structural components, which provide information on the probability of experiencing a certain level of monetary loss when a given damage state is attained. Fragility curves and loss function developed in this study can be directly used within the FEMA P-58 framework for the seismic performance assessment of RC frame buildings with masonry infills.

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city - structural aspects

  • Kappos, A.J.;Panagopoulos, G.K.;Sextos, A.G.;Papanikolaou, V.K.;Stylianidis, K.C.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.197-214
    • /
    • 2010
  • The paper presents a methodology for developing earthquake damage and loss scenarios for urban areas, as well as its application to two cities located in Mediterranean countries, Grevena (in Greece) and D$\ddot{u}$zce (in Turkey), that were struck by strong earthquakes in the recent past. After compiling the building inventory in each city, fragility curves were derived using a hybrid approach previously developed by the authors, and a series of seismic scenarios were derived based on microzonation studies that were specifically conducted for each city (see companion paper by Pitilakis et al.). The results obtained in terms of damage estimates, required restoration times and the associated costs are presented in a GIS environment. It is deemed that both the results obtained, and the overall methodology and tools developed, contribute towards the enhancement of seismic safety in the Mediterranean area (as well as other earthquake-prone regions), while they constitute a useful pre-earthquake decision-making tool for local authorities.

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

Seismic Techniques for the Integrated Assessment of Structural Integrity of Concrete Runway (콘크리트 활주로 건전도상태의 종합평가를 위한 비파괴 탄성파기법)

  • Joh Sung-Ho;Kang Tae-Ho;Cho Mi-Ra;Suh Young-Chan;Kwon Soo-Ahn
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.51-63
    • /
    • 2005
  • Concrete pavement may suffer from material deterioration or structural problems, which lead to surface cracks and deflection of a concrete pavement. Degraded concrete pavement, when it is still under operation, should be recovered by an urgent maintenance to avoid the discontinued service leading to the significant traffic problems and economic loss. Seismic techniques are good tools to assess the structural integrity of concrete runway. It is because seismic techniques can evaluate engineering properties nondestructively and quickly and the evaluation can be extended to subgrade. In this study, a series of numerical simulations of stress-wave propagation were performed to verify feasibility of seismic techniques as an assessment tool. Based on the results of the numerical simulation, a framework of using seismic techniques was presented fur the nondestructive integrated assessment fur structural integrity of concrete runway. And the presented framework was applied to $\bigcirc\bigcirc$ concrete runway with surface cracks, which required urgent maintenance, to identify the causes of the surface cracks. The results obtained from the structural integrity assessment were compared with the measurements of the cores collected from the same runway for verification of the presented framework.

A Methodology of Seismic Damage Assessment Using Capacity Spectrum Method (능력 스펙트럼법을 이용한 건물 지진 손실 평가 방법)

  • Byeon, Ji-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.1-8
    • /
    • 2005
  • This paper describes a new objective methodology of seismic building damage assessment which is called Advanced Component Method(ACM). ACM is a major attempt to replace the conventional loss estimation procedure, which is based on subjective measures and the opinions of experts, with one that objectively measures both earthquake intensity and the response ol buildings. First, response of typical buildings is obtained analytically by nonlinear seismic static analysis, push-over analyses. The spectral displacement Is used as a measure of earthquake intensity in order to use Capacity Spectrum Method and the damage functions for each building component, both structural and non-structural, are developed as a function of component deformation. Examples of components Include columns, beams, floors, partitions, glazing, etc. A repair/replacement cost model is developed that maps the physical damage to monetary damage for each component. Finally, building response, component damage functions, and cost model were combined probabilistically, using Wonte Carlo simulation techniques, to develop the final damage functions for each building type. Uncertainties in building response resulting from variability in material properties and load assumptions were incorporated in the Latin Hypercube sampling technique. The paper also presents and compares ACM and conventional building loss estimation based on historical damage data and reported loss data.