• Title/Summary/Keyword: seismic loss

Search Result 197, Processing Time 0.026 seconds

Experimental and numerical assessment of EBF structures with shear links

  • Caprili, Silvia;Mussini, Nicola;Salvatore, Walter
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.123-138
    • /
    • 2018
  • Eccentrically braced frames (EBF) represent an optimal structural solution for seismic prone areas, being able to provide high dissipative capacity and good elastic stiffness, to withstand strong seismic events without significant loss of bearing capacity and to avoid damage to non-structural elements in case of low and moderate earthquakes. The accurate knowledge of the cyclic behaviour of the dissipative links, characterizing the whole performance of EBFs, is required to optimize the structural properties and to refine the design techniques adopted for multi-storey buildings' analysis. Reliable numerical models for the links, at the same time requiring a limited computational effort, are then needed. The present work shows the results of a wide experimental test campaign executed on real-scale one storey/one bay frames with horizontal and vertical links, together with the elaboration of a simple semi-analytical model for the quick representation of the cyclic behaviour of shear links.

A Study on the Development of Torsion Analysis Method for Buildings Using Rapid Safety Assessment System Based on Accelerometers (진동계측자료 기반 안전성평가 시스템을 활용한 건축물의 비틀림 분석 방법 개발)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Lee, Jung-Han;Park, Byung-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.275-281
    • /
    • 2021
  • In this study, algorithms for analyzing the torsion of buildings under earthquake excitation are developed. The algorithm and formulations to account for the torsional angle are verified by analyzing the seismic acceleration time history data. The method was applied to the reference buildings to examine their operation and usability. The reference application demonstrated that the noise-canceling scheme successfully overcame various obstacles in the field measurements. The developed method is expected to be used as a tool to support a loss assessment system for determining the direction and priority of disaster response in the event of an earthquake.

Behavior of Non-seismic Detailed Low-Rise R/C Exterior Beam-to-Column Joints Subjected to Cyclic Loading (반복 하중을 받는 비내진 저층 RC 구조물의 외부 기둥-보 접합부의 거동)

  • Sur, Man-Sik;Chang, Chun-Ho;Kim, Young-Moon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Seismic design code has been performed since 1988 in Korea, so it has not been applied to low-rise reinforced concrete buildings which had been built before 1988. Those building have been designed only for gravity loads based on non-seismic code, Therefore, even minor earthquake occurred, those buildings might have serious damages. In this paper, to investigate the behavior of low-rise reinforced concrete moment resisting frame which had been built in according to the building code of Korea that had been published before 1988, two type of 1/2 scaled exterior beam-column subassemblies which have non-seismic detailing based on the building code of Korea were constructed and tested with reversed cycling loading under the displacement control method. The special features of joint with non-seismic detailing is that there is no transverse reinforcement in the joint. In tests, cracks pattern, strength degradation, loss of stiffness, energy dissipation and the slippage of beam and column bars were investigated. Cracks did not occurred in the joint even seismic loading of 0.12g which is considered as peak ground acceleration in Korea was applied. And increasing seismic loading above 0.12g shear crack happened in the joint which have not transverse beam.

Seismic Performance Evaluation and Retrofit of a 2-Story Steel Building Using a Fragility Contour Method (취약성 등고선을 이용한 비내진 2층 철골조 건축물에 대한 내진성능 평가와 보강)

  • Shin, Ji-Uk;Lee, Ki-Hak;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Based on the Korean Building Standard Law, a building less than 3-stories and $1000m^2$ in area is defined as a small-level building and, as a result, this type of building has been excluded from the requirement to comply with seismic design. In order to prevent the loss of life and property under earthquake loadings, the small-scale building should satisfy the seismic performance specified in the current code through a seismic retrofit. In this study, a seismic retrofit scheme of a Buckling-Restrained Knee Brace (BRKB) was developed for non-seismic 2-story steel buildings, including small-scale buildings, using a fragility contour method. In order to develop an effective retrofit scheme of the BRKB for the building, a total of 75 BRKB analytical models were used to achieve the desired performance levels and analyzed using the fragility contour method. The seismic performance of the retrofitted building was evaluated in terms of the weight of the developed BRKB systems. This study shows that the fragility contour method can be used for rapid evaluation and is an effective tool for structural engineers.

Seismic Performance and Damage Prediction of Existing Fire-protection Pipe Systems Installed in RC Frame Structures (철근콘크리트 구조물 내 부착된 수계 관망시스템의 내진거동 및 손상예측)

  • Jung, Woo-Young;Ju, Bu-Seog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.37-43
    • /
    • 2011
  • Reliability of piping systems is essential to the safety of any important industrial facilities. During an earthquake, damage to the piping system can occur. It can also cause considerable economic losses and the loss of life following earthquakes. Traditionally, the study of the secondary system was less important than primary structure system, however it has recently been emerging as a key issue for the effective maintenance of the structural system and to help reduce nonstructural earthquake damage. The primary objectives of this study are to evaluate seismic design requirements and the seismic performance of gas and fire protection piping systems installed in reinforced concrete (RC) buildings. In order to characterize the seismic behavior of the existing piping system in an official building, 10 simulated earthquakes and 9 recorded real earthquakes were applied to ground level and the building system by the newmark average acceleration time history method. The results developed by this research can be used for the improvement of new seismic code/regulatory guidelines of secondary systems as well as the improvement of seismic retrofitting or the strengthening of the current piping system.

Earthquake Loss Estimation Including Regional Characteristics (지역특성을 반영한 지진손실평가)

  • Kim, Joon-Hyung;Hong, Yun-Su;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • When an earthquake occurs, the severity of damage is determined by natural factors such as the magnitude of the earthquake, the epicenter distance, soil properties, and type of the structures in the affected area, as well as the socio-economic factors such as the population, disaster prevention measures, and economic power of the community. This study evaluated the direct economic loss due to building damage and the community's recovery ability. Building damage was estimated using fragility functions due to the design earthquake by the seismic design code. The usage of the building was determined from the information in the building registrar. Direct economic loss was evaluated using the standard unit price and estimated building damage. The standard unit price was obtained from the Korean Real Estate Board. The community's recovery capacity was calculated using nine indicators selected from regional statistical data. After appropriate normalization and factor analysis, the recovery ability score was calculated through relative evaluation with neighboring cities.

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

Seismic Analysis Process of Steel Box girder Bridge based on BIM (강상자형 교량의 BIM기반 내진해석 프로세스)

  • Lee, Heon-Min;Lee, Jin-Kyoung;Yoo, Jae-Myoung;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.421-428
    • /
    • 2011
  • The communication of each others is lack between planing, design, construction and maintenance in domestic construction industry. This problem makes the omission of information and the loss of cost. So, the introduction of BIM can be the solution about that. BIM manages all information generated during all life-cycle of a structure and consequently maximizes the efficiency of utilizing information. This is done through 3D information model associated with a three-dimensional(3D) parametric CAD. This study proposes the seismic analysis process of steel box bridge for structural design of bridge construction project based on BIM. The additional process is needed for the purpose that structural data is inherent in the property information of 3D information model. This process has 3D modeling progress done by using the information decided in design phase. The design document of seismic analysis can be derived with the proposed process to steel box bridge.

A Method for Generating Floor Response Spectra for Seismic Design for Non-Structural Components (비구조요소의 내진 설계를 위한 층응답스펙트럼 생성 기법)

  • Chang, Sung-Jin;Park, Dong-Uk;Kim, Jae-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.154-162
    • /
    • 2019
  • Large scale damage has been globally increased due to natural disasters such as earthquake. Although a variety of studies secured seismic performance of buildings, casualties and economic loss have occurred because of poor security of seismic performance in non-structural components. Structure's location on which non-structural components are installed and characteristics of vibration occurring on each position of structures are varied, so a response spectrum is required for each position of structures. In addition, a response spectrum occurring in a structure is different, depending on the form of it and positions on which it is installed. Therefore, selection of a response spectrum is important, so a definite method for calculating the response spectrum which acts on non-structural components is necessary. A method for choosing a response spectrum is suggested in this paper, and a structural analysis was conducted with the suggested method, by selecting a ground response spectrum and a structural system, which may occur in Korea. Moreover, it helps create a response spectrum necessary for a seismic test of non-structural components, by suggesting the method for deduction it, with a simple formula.

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.