• 제목/요약/키워드: seismic level

Search Result 843, Processing Time 0.026 seconds

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.

DEVELOPMENT OF AN INTEGRATED RISK ASSESSMENT FRAMEWORK FOR INTERNAL/EXTERNAL EVENTS AND ALL POWER MODES

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.459-470
    • /
    • 2012
  • From the PSA point of view, the Fukushima accident of Japan in 2011 reveals some issues to be re-considered and/or improved in the PSA such as the limited scope of the PSA, site risk, etc. KAERI (Korea Atomic Energy Research Institute) has performed researches on the development of an integrated risk assessment framework related to some issues arisen after the Fukushima accident. This framework can cover the internal PSA model and external PSA models (fire, flooding, and seismic PSA models) in the full power and the low power-shutdown modes. This framework also integrates level 1, 2 and 3 PSA to quantify the risk of nuclear facilities more efficiently and consistently. We expect that this framework will be helpful to resolve the issue regarding the limited scope of PSA and to reduce some inconsistencies that might exist between (1) the internal and external PSA, and (2) full power mode PSA and low power-shutdown PSA models. In addition, KAERI is starting researches related to the extreme external events, the risk assessment of spent fuel pool, and the site risk. These emerging issues will be incorporated into the integrated risk assessment framework. In this paper the integrated risk assessment framework and the research activities on the emerging issues are outlined.

Cyclic Behavior of Timber Column Concealed Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.123-133
    • /
    • 2013
  • This paper presents experimental and numerical tests on a recently developed timber column concealed base joint. This joint was designed to replace the wood-wood connection found in the post-and-beam structure of Hanok, the traditional Korean timber house. The use of metallic connectors provides an increased ductility and energy dissipation for a better performance under reversed loading, especially seismic. In this study, we investigate the performance of the joint under pseudo-static reversed cyclic moment loading through the study of its ductility and energy dissipation. We first perform experimental tests. Results show that the failure occurs in the metallic connector itself because of stress concentrations, while no brittle fracture of wood occur. Subsequent numerical simulations using a refined finite element model confirm these conclusions. Then, using a practical modification of the joint configuration with limited visual impact, we improve the ductility and energy dissipation of the joint while retaining a same level of rotational strength as the originally designed configuration. We conclude that the joint has a satisfying behavior under reversed moment loading for use in earthquake resistant timber structure in low to moderate seismicity areas like Korea.

Analysis of Failure Behavior of Pile Embedded in Liquefiable Soil Deposits considering Buckling Instability (좌굴을 고려한 액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Han, Jin-Tae;Cho, Chong-Suck;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.105-112
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. However, a case of pile failure was reported despite the fact that a large margin of safety factor was employed in their design. This means that the current seismic design method of pile is not agreeable with the actual failure mechanism of pile. Newly proposed failure mechanism of pile is a pile failure based on buckling instability. In this study, failure behavior of pile embedded in liquefied soil deposits was analyzed considering lateral spreading and buckling instability performing 1g shaking table test. As a result, it can be concluded that the pile subjected to excessive axial loads ($near\;P_{cr}$) can fail by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, lateral spreading increased lateral deflection of pile and reduced the buckling load, promoting more rapid collapse. In addition, buckling shape of pile was observed. In the ease of pile buckling, hinge formed at the middle of the pile, not at the bottom. And in sloping grounds, location of hinge got loiter compared with level ground because of the effects of lateral spreading.

  • PDF

Strut-and-tie model for shear capacity of corroded reinforced concrete columns

  • Tran, Cao Thanh Ngoc;Nguyen, Xuan Huy;Nguyen, Huy Cuong;Vu, Ngoc Son
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • An analytical model is developed in this paper to predict the shear capacity of reinforced concrete (RC) columns with corroded transverse reinforcements. The shear strength model for corroded RC columns is proposed based on modifying the existing strut-and-tie model, which considers the deformational compatibility between truss and arch mechanisms. The contributions to the shear strength from both truss and arch mechanisms are incorporated in the proposed model. The effects of corrosion level of transverse reinforcements are considered in the proposed model through the minimum residual cross-sectional area of transverse reinforcements and the reduction of concrete compressive strength for the cover area. The shear strengths calculated from the developed model are compared with the experimental results from Vu's study (2017), which consisted of RC columns with corroded transverse reinforcements showing shear failure under the cyclic loading. The comparison results indicate satisfactory correlations. Parametric studies are conducted based on the developed shear strength model to explore the effects of column axial loading, aspect ratios, transverse reinforcements and the corrosion levels in transverse reinforcements to the shear strength of RC columns with corroded transverse reinforcements.

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Geoacoustic Model of Coastal Bottom Strata off the Northwestern Taean Peninsula in the Yellow Sea

  • Ryang, Woo-Hun;Kwon, Hyuckjong;Choi, Jee-Woong;Kim, Kyong-O;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.428-435
    • /
    • 2019
  • In the shallow coastal area, located off the northwestern Taean Peninsula of the eastern Yellow Sea, geoacoustic models with two layers were reconstructed for underwater acoustic experimentation and modeling. The Yellow Sea experienced glacio-eustasy sea-level fluctuations during Quaternary period. Coastal sedimentation in the Yellow Sea was characterized by alternating terrestrial and shallow marine deposits that reflected the fluctuating sea levels. The coastal geoacoustic models were based on data from piston, grab cores and the high-resolution 3.5 kHz, chirp seismic profiles (about 70 line-kilometers, respectively). Geoacoustic data of the cores were extrapolated down to 3 m in depth for geoacoustic models. The geoacoustic property of seafloor sediments is considered a key parameter for modeling underwater acoustic environments. For simulating actual underwater environments, the P-wave speed of the models was adjusted to in-situ depth below the sea floor using the Hamilton method. The proposed geoacoustic models could be used for submarine acoustic inversion and modeling in shallow-water environments of the study area.

Summarized IDA curves by the wavelet transform and bees optimization algorithm

  • Shahryari, Homayoon;Karami, M. Reza;Chiniforush, Alireza A.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.165-175
    • /
    • 2019
  • Incremental dynamic analysis (IDA), as an accurate method to evaluate the parameters of structural performance levels, requires many non-linear time history analyses, using a set of ground motion records which are scaled to different intensity levels. Therefore, this method is very computationally demanding. In this study, a new method is presented to estimate the summarized (16%, 50%, and 84% fractiles) IDA curves of a first-mode dominated structure using discrete wavelet transform and bees optimization algorithm. This method reduces the number of required ground motion records for the prediction of the summarized IDA curves. At first, a subset of first list ground motion records is decomposed by means of discrete wavelet transform which have a low dispersion estimating the summarized IDA curves of equivalent SDOF system of the main structure. Then, the bees algorithm optimizes a series of factors for each level of detail coefficients in discrete wavelet transform. The applied factors change the frequency content of original ground motion records which the generated ground motions records can be utilized to reliably estimate the summarized IDA curves of the main structure. At the end, to evaluate the efficiency of the proposed method, the seismic behavior of a typical 3-story special steel moment frame, subjected to a set of twenty ground motion records is compared with this method.

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.