• 제목/요약/키워드: seismic level

검색결과 843건 처리시간 0.024초

Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions

  • Hadzima-Nyarko, Marijana;Ademovic, Naida;Pavic, Gordana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.473-485
    • /
    • 2018
  • The buildings of architectural and cultural heritage are mostly built with stone or brick wall elements, which are connected using limestone or limestone cement mortar, without a full knowledge of the mechanical properties of masonry structures. The compatibility of heritage masonry buildings with valid technical specifications and the rules for earthquake resistance implies the need for construction work such as repairs, strengthening or reconstruction. By strengthening the masonry buildings, ductility and bearing capacity are increased to a level, which, in the case of the earthquake design, allows for some damage to happen, however the structure retains sufficient usability and bearing capacity without the possibility of collapse. Comparison between traditional and modern techniques for seismic strengthening of masonry buildings is given according to their effects, benefits and disadvantages. Recent Croatian provisions provided for heritage buildings enabling deviation of technical specifications are discussed.

Ductility inverse-mapping method for SDOF systems including passive dampers for varying input level of ground motion

  • Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권1호
    • /
    • pp.59-81
    • /
    • 2012
  • A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.

Computational modeling of buried blast-induced ground motion and ground subsidence

  • Zhang, Zhi-Chao;Liu, Han-Long;Pak, Ronald Y.S.;Chen, Yu-Min
    • Geomechanics and Engineering
    • /
    • 제7권6호
    • /
    • pp.613-631
    • /
    • 2014
  • To complement the method of field-scale seismic ground motion simulations by buried blast techniques, the application and evaluation of the capability of a numerical modeling platform to simulate buried explosion-induced ground motion at a real soil site is presented in this paper. Upon a layout of the experimental setup at a level site wherein multiple charges that were buried over a large-diameter circle and detonated in a planned sequence, the formulation of a numerical model of the soil and the explosives using the finite element code LS-DYNA is developed for the evaluation of the resulting ground motion and surface subsidence. With a compact elastoplastic cap model calibrated for the loess soils on the basis of the site and laboratory test program, numerical solutions are obtained by explicit time integration for various dynamic aspects and their relation with the field blast experiment. Quantitative comparison of the computed ground acceleration time histories at different locations and induced spatial subsidence on the surface afterwards is given for further engineering insights in regard to the capabilities and limitations of both the numerical and experimental approaches.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

Assessment of concrete degradation in existing structures: a practical procedure

  • Porco, Francesco;Uva, Giuseppina;Fiore, Andrea;Mezzina, Mauro
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.701-721
    • /
    • 2014
  • In the assessment of existing RC buildings, the reliable appraisal of the compressive strength of in-situ concrete is a fundamental step. Unfortunately, the data that can be obtained by the available testing methods are typically affected by a high level of uncertainty. Moreover, in order to derive indications about the degradation and ageing of the materials by on site tests, it is necessary to have the proper terms of comparison, that is to say, to know the reference data measured during the construction phases, that are often unavailable when the building is old. In the cases when such a comparison can be done, the in situ strength values typically turn out to be lower than the reference strength values (tests performed on taken samples during the construction). At this point, it is crucial to discern and quantify the specific effect induced by different factors: ageing of the materials; poor quality of the placement, consolidation or cure of the concrete during the construction phases; damage due to drilling. This paper presents a procedure for correlating the destructive compressive tests and non-destructive tests (ultrasonic pulse velocity tests) with the data documenting the compressive strength tested during the construction phases. The research work is aimed at identifying the factors that induce the difference between the in-situ strength and cubes taken from the concrete casting, and providing, so, useful information for the assessment procedure of the building.

Health-monitoring and system-identification of an ancient aqueduct

  • Chrysostomou, Christis Z.;Stassis, Andreas
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.183-194
    • /
    • 2008
  • An important historical monument of Cyprus is an aqueduct that was built in 1747 to provide water to the city of Larnaca and to its port. Because of its importance to the cultural heritage of Cyprus, the aqueduct has been selected as one of the case-study monuments in the project Wide-Range Non-Intrusive devices toward Conservation of Historical Monuments in the Mediterranean Area (WIND-CHIME). Detailed drawings of the aqueduct obtained from the Department of Antiquities of Cyprus have been used for the development of a computational model. The model was fine-tuned through the measurement of the dynamic characteristics of the aqueduct using forced and ambient vibrations. It should be noted that measurement of the dynamic characteristics of the structure were performed twice in a period of three years (June of 2004 and May of 2007). Significant differences were noted and they are attributed to soil structure interaction effects due to seasonal variations of the water-level in a nearby salt-lake. The system identification results for both cases are presented here. This monument was used to test the effectiveness of shape memory alloy (SMA) pre-stressed devices, which were developed during the course of the project, in protecting it without spoiling its monumental value.

Use of copper shape memory alloys in retrofitting historical monuments

  • El-Borgi, S.;Neifar, M.;Jabeur, M. Ben;Cherif, D.;Smaoui, H.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.247-259
    • /
    • 2008
  • The potential use of Cu-based shape memory alloys (SMA) in retrofitting historical monuments is investigated in this paper. This study is part of the ongoing work conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The present investigation consists of a finite element simulation, as a preliminary to an experimental study where a cantilever masonry wall, representing a part of a historical monument, is subjected to monotonic and quasi-static cyclic loadings around a horizontal axis at the base level. The wall was retrofitted with an array of copper SMA wires with different cross-sectional areas. A new model is proposed for heat-treated copper SMAs and is validated based on published experimental results. A series of nonlinear finite element analyses are then performed on the wall for the purpose of assessing the SMA device retrofitting capabilities. Simulation results show an improvement of the wall response for the case of monotonic and quasi-static cyclic loadings.

지진관측자료의 효과적인 활용에 관한 고찰 (Best Use of the Measured Earthquake Data)

  • 연관희;박동희;김성주;최원학;장천중
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.36-43
    • /
    • 2001
  • In Korea, we are absolutely short of earthquake data in good quality from moderate and large earthquakes, which are needed fur the study of strong ground motion characteristics. This means that the best use of the available data is needed far the time being. In this respect, several methods are suggested in this paper, which can be applied in the process of data selection and analysis. First, it is shown that the calibration status of seismic stations can be easily checked by comparing the spectra from accelerometer and velocity sensor both of which are located at the same location. Secondly, it is recommended that S/N ratio in the frequency domain should be checked before discarding the data by only look of the data in time domain. Thirdly, the saturated earthquake data caused by ground motion level exceeding the detection limit of a seismograph are considered to see if such data can be used for spectrum analysis by performing numerical simulation. The result reveals that the saturated data can still be used within the dominant frequency range according to the levels of saturation. Finally, a technique to minimize the window effect that distorts the low frequency spectrum is suggested. This technique involves detrending in displacement domain once the displacement data are obtained by integration of low frequency components of the original data in time domain. Especially, the low frequency component can be separated by using discrete wavelet transform among many alternatives. All of these methods mentioned above may increase the available earthquake data and frequency range.

  • PDF

수평 전단시험에 의한 납 삽입 적층고무베어링의 기계적 특성 평가 (Mechanical Characterization of Lead-Rubber Bearing by Horizontal Shear Tests)

  • 전영선;최인길;유문식
    • 한국지진공학회논문집
    • /
    • 제5권6호
    • /
    • pp.1-10
    • /
    • 2001
  • 본 연구에서는 수평전단시험을 통하여 LRB(lead-rubber hearing)의 동적 특성을 분석하였다. 10ton 및 200ton 용량의 LRB를 이용하여 수평전단시험을 수행한 결과 LRB의 동적 특성은 수평하중의 재하속도, 연직하중의 크기 및 전단변형률 등에 따라 크게 달라지는 것으로 나타났다. 세장비가 큰 면진장치에 과도한 변형을 가할 경우 내부 납심에 소성한지가 발생되어 납심이 파괴되는 것으로 나타났다. 따라서 면진구조물의 설계 및 해석 시에는 지진응답과 재하하중의 크기에 따라서 달라지는 LRB의 기계적 특성치를 적용하여 안전한 설계가 이루어질 수 있도록 하여야 한다.

  • PDF