• Title/Summary/Keyword: seismic isolation systems

Search Result 184, Processing Time 0.016 seconds

Base Isolation Performance of Friction Pendulum System using Magnetic Force (자력을 이용한 마찰진자 베어링의 면진성능)

  • Hwang, In-Ho;Shin, Ho-Jae;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.55-61
    • /
    • 2008
  • One of the most recent base-isolation systems to improve the earthquake resistance of structures is the Friction Pendulum System(FPS). Simple in design but with versatile properties, the FPS has been used in some of the world s largest seismically isolated buildings, bridges and chemical tanks. FPS using PTFE(Polytetrafl-uoroethylene) based material has been developed to provide a simple and effective way for structures to achieve earthquake resistance. PTFE materials are soft, and are apt to become deformed easily after a few working cycles. In this study, magnetic force is used rather than the usual PTFE materials to improve the material shortcomings. A MF-FPS(Magnetic force-Friction Pendulum System) is proposed, and us shown to effectively protect structures against earthquakes. To demonstrate the advantages of this new system, the MF-FPS is compared with FPS as an attempt to prove its performance. A six-degree-of-freedom model is considered as a numerical example. The ground acceleration data of El Centro, Mexico and Gebze earthquakes are used as seismic excitations. The results showed that MF-FPS improved performance compared with FPS.

Fuzzy control of hybrid base-isolator with magnetorheological damper and friction pendulum system (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.;Lin, P.Y.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.61-70
    • /
    • 2005
  • Shaking table tests are carried out on a single-degree-of-freedom mass that is equipped with a hybrid base isolation system. The isolator consists of a set of four specially-designed friction pendulum systems (FPS) and a magnetorheological (MR) damper. The structure and its hybrid isolation system are subjected to various intensities of near- and far-fault earthquakes on a large shake table. The proposed fuzzy controller uses feedback from displacement or acceleration transducers attached to the structure to modulate resistance of the semi-active damper to motion. Results from several types of passive and semi-active control strategies are summarized and compared. The study shows that a combination of FPS isolators and an adjustable MR damper can effectively provide robust control of vibration for a large full-scale structure undergoing a wide variety of seismic loads.

Depiction of concrete structures with seismic separation under faraway fault earthquakes

  • Luo, Liang;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Nguyen, Viet-Duc;Dang, Hoang-Minh
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • One of the most suitable methods in structural design is seismic separator. Lead-Rubber Bearing (LRB) is one of the most well-known separation systems which can be used in different types of structures. This system mitigates the earthquake acceleration prior to transferring to the structure efficiently. However, the performance of this system in concrete structures with different heights have not been evaluated thoroughly yet. This paper aims to evaluate the performance of LRB separation system in concrete structures with different heights. For this purpose, three, 16, and 23 story concrete structures are equipped by LRB and exposed to a far-field earthquake. Next, a time history analysis is conducted on each of the structures. Finally, the performance of the concrete structures is compared with each other in the term of their response to the earthquakes and the formation of plastic hinges. The results of the paper show that the rate of change in acceleration response and the ratio of drift along the height of 8 and 23 stories concrete structures are more than those of the 16-stories, and the use of LRB reduces the formation of plastic joints.

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.