• Title/Summary/Keyword: seismic isolation ratio

Search Result 62, Processing Time 0.028 seconds

The Application of Resettable Device to Semi-Active Tuned Mass Damper Building Systems for Multi-level Seismic Hazard Mitigation

  • Chey, Min-Ho
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • An innovative multi-story Semi-Active Tuned Mass Damper (SATMD) building system is proposed to control seismic response of existing structures. The application of adding new stories as large tuned mass and semi-active (SA) resettable actuators as central features of the control scheme is derived. For the effective control of the structures, the optimal tuning parameters are considered for the large mass ratio, for which a previously proposed equation is used and the practical optimal stiffness is allocated to the actuator stiffness and rubber bearing stiffness. A two-degree-of freedom (2-DOF) model is adopted to verify the principal efficiency of the suggested structural control concept. The simulations for this study utilizes the three ground motions, from SAC project, having probability of exceedance of 50% in 50 years, 10% in 50 years, and 2% in 50 years for the Los Angeles region. 12-story moment resisting frames, which are modified as '12+2' and '12+4' story structures, are investigated to assess the viability and effectiveness of the system that aims to reduce the response of the buildings to earthquakes. The control ability of the SATMD scheme is compared to that of an uncontrolled and an ideal Passive Tuned Mass Damper (PTMD) building system. From the performance results of suggested '12+2' and '12+4' story retrofitting case studies, SATMD systems shows significant promise for application of structural control where extra stories might be added.

Seismic Stability and Fatigue Performance Test of Lead Rubber Bearings (납-적층고무받침의 지진안정성 및 피로거동 실험)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin;Kwark, Jong-Won;Cho, Hae-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.537-544
    • /
    • 2006
  • In this study, performance level evaluation tests have been actually performed on laminated rubber seismic isolation bearings (LRB) made in Korea. To provide basic data for setting up fabrication criteria and performance evaluation criteria three real scale LRB were tested and the test results were analysised. Accordingly, a large capacity test device has been designed and manufactured to implement the tests. The device selected for evaluation is a circular LRB actually applied in bridges. Evaluation tests were conducted using full-scale LRB with diameter of 851mm in the rubber part and total height of 215mm of which the effective horizontal stiffness and equivalent damping ratio have been measured during the experiments.

  • PDF

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Design of Viscoelastic Dampers Using Effective Damping Ratio (유효감쇠비를 이용한 점탄성 감쇠기의 설계)

  • 최현훈;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.371-378
    • /
    • 2001
  • To enhance seismic performance of a structure ATC-40 and FEMA-273 propose technical strategies such as increasing strength, altering stiffness, and reducing demand by employing base isolation and energy dissipation devices. Specifically the energy dissipation devices directly increase the ability of the structure to dampen earthquake response. However nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this study a simple and straightforward procedure is developed using effective damping ratio to obtain the required amount of viscoelastic dampers in order to meet given performance objectives. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the analysis results, earthquake demand and required damping ratio were reduced by installing viscoelastic dampers. The results also show that with the addition of the supplemental damping evaluted by the proposed method the performance of the model structures are well restrained within the target point.

  • PDF

The effect of rubber bumper in order to suggest a new equation to calculate damping ratio, subjected building pounding during seismic excitation

  • Khatami, S.M.;Naderpour, H.;Mortezaei, A.R.;Barros, R.C.;Maddah, M.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2022
  • One of the objectives to prevent building pounding between two adjacentstructures is to considerseparation distance or decrease relative displacement during seismic excitation. Although the majority of building codes around the world have basically suggested some equations or approximately recommended various distances between structuresto avoid pounding hazard, but a lot of reportsin zone of pounding have obviously shown thatsafety situation or economic consideration are not always provided due to the collisions between buildings and the cost of land, respectively. For this purpose, a dynamic MDOF model by having base isolation system is numerically considered and using various earthquake records, relative displacements are mathematically investigated. Different equations to determine the value of damping ratio are collected and the results of evaluations are listed for comparison among them to present a new equation for determination of impact damping ratio. Presented equation is depends significantly on impact velocity before and after impact based on artificial neural network, which the accuracy of them is investigated and also confirmed. In order to select the optimum equation, hysteresisloop of impact between base of building and rubber bumper is considered and compared with the hysteresis loop of each impact, calculated by different equations. Finally, using representative equation, the effect of thickness, number and stiffness of rubber bumpers are numerically investigated. The results of analysis indicate that stiffness and number of bumpers have significantly affected in zone of impact force while the thickness of bumpers have not shown significant influence to calculate impact force during earthquake. For instance, increasing the number of bumpers, gap size between structures and also the value of stiffness is caused to decrease impact force between models. The final evaluation demonstrates that bumpers are able to decrease peak lateral displacement of top story during impact.

Implication of rubber-steel bearing nonlinear models on soft storey structures

  • Saiful Islam, A.B.M.;Hussain, Raja Rizwan;Jumaat, Mohammed Zamin;Mahfuz ud Darain, Kh.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.603-619
    • /
    • 2014
  • Soft storey buildings are characterised by having a storey that has a large amount of open space. This soft storey creates a major weak point during an earthquake. As the soft stories are typically associated with retail spaces and parking garages, they are often on the lower levels of tall building structures. Thus, when these stories collapse, the entire building can also collapse, causing serious structural damage that may render the structure completely unusable. The use of special soft storey is predominant in the tall building structures constructed by several local developers, making the issue important for local building structures. In this study, the effect of the incorporation of an isolator on the seismic behaviour of tall building structures is examined. The structures are subjected to earthquakes typical of the local city, and the isolator is incorporated with the appropriate isolator time period and damping ratio. A FEM-based computational relationship is proposed to increase the storey height so as to incorporate the isolator with the same time period and damping ratio for both a lead rubber bearing (LRB) and high-damping rubber bearing (HDRB). The study demonstrates that the values of the FEM-based structural design parameters are greatly reduced when the isolator is used. It is more beneficial to incorporate a LRB than a HDRB.

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

An Experimental Study and the Design of the Rubber Laminated Lead Damper (탄성체 적층 납삽입 제진장치의 설계 및 특성시험)

  • Lee, Wan-Ha;Park, Jin-Young;Park, Jung-Woo;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.165-170
    • /
    • 2011
  • A large number of seismic isolation systems have been developed since the early 1970s. They are basically a combination of elastomeric bearing and energy dissipators. The investigation described in this paper analyzes shear property and the frequency dependence of Lead Rubber Damper(LRD). Lead Rubber Damper is similar in shape and performance property to Lead Rubber Bearing. Experimental condition ranges from 20 to 200% in share strain and from 0.1 to 1.0Hz in frequency. When the shear strain is increased, effective stiffness and damping ratio are decreased. When the frequency is increased, change of the behavior characteristic is subtle.

  • PDF

Experimental study on the compressive stress dependency of full scale low hardness lead rubber bearing

  • Lee, Hong-Pyo;Cho, Myung-Sug;Kim, Sunyong;Park, Jin-Young;Jang, Kwang-Seok
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.89-103
    • /
    • 2014
  • According to experimental studies made so far, design formula of shear characteristics suggested by ISO 22762 and JEAG 4614, representative design code for Lead Rubber Bearing(LRB) shows dependence caused by changes in compressive stress. Especially, in the case of atypical special structure, such as a nuclear power structure, placement of seismic isolation bearing is more limited compared to that of existing structures and design compressive stress is various in sizes. As a result, there is a difference between design factor and real behavior with regards to shear characteristics of base isolation device, depending on compressive stress. In this study, a full-scale low hardness device of LRB, representative base isolation device was manufactured, analyzed, and then evaluated through an experiment on shear characteristics related to various compressive stresses. With design compressive stress of the full-scale LRB (13MPa) being a basis, changes in shear characteristics were analyzed for compressive stress of 5 MPa, 10 MPa, 13 MPa, 15 MPa, and 20 MPa based on characteristics test specified by ISO 22762:2010 and based on the test result, a regression analysis was made to offer an empirical formula. With application of proposed design formula which reflected the existing design formula and empirical formula, trend of horizontal characteristics was analyzed.